Repository logo
English
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of R-3
English
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Wang, Pi-Guang"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Damping Enhancement Solution for Wind Turbines Through Amplifying Damping Transfer Systems
    (World Scientific, 2024) Wang, Meng; Lu, Hai-Qiang; Wang, Pi-Guang; Nagarajaiah, Satish; Du, Xiu-Li
    This paper proposed a novel amplifying damping transfer system (ADTS) as a new damping enhancement solution for high-rise structures like wind turbines. The proposed ADTS can transfer the upper rotation of turbine tower to its bottom with damping amplification mechanism. Hence, viscous damper can be installed on wind turbines in a very convenient and efficient way. The dynamic characteristics of wind turbines equipped with ADTS were parametrically investigated concerning the influence of the damping, stiffness, and position of the ADTS based on complex frequency analysis. It was found that each mode has a maximum damping ratio, which is affected by the ADTS stiffness and position. The optimal ADTS position of the first mode is about 0.7 H (turbine height), and the optimal positions of the second mode are at 0.3 H and 0.86 H. The proposed ADTS considerably attenuated both drift and acceleration responses of wind turbines caused by winds and earthquakes. For example, as compared to the optimized tuned mass damper, ADTS further decreases the displacement (acceleration) of wind turbine tower by about 22% (38%).
  • About R-3
  • Report a Digital Accessibility Issue
  • Request Accessible Formats
  • Fondren Library
  • Contact Us
  • FAQ
  • Privacy Notice
  • R-3 Policies

Physical Address:

6100 Main Street, Houston, Texas 77005

Mailing Address:

MS-44, P.O.BOX 1892, Houston, Texas 77251-1892