Browsing by Author "Wang, Jun"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item GRIPT: a novel case-control analysis method for Mendelian disease gene discovery(BioMed Central, 2018) Wang, Jun; Zhao, Li; Wang, Xia; Chen, Yong; Xu, Mingchu; Soens, Zachry T; Ge, Zhongqi; Wang, Peter R; Wang, Fei; Chen, RuiAbstract Despite rapid progress of next-generation sequencing (NGS) technologies, the disease-causing genes underpinning about half of all Mendelian diseases remain elusive. One main challenge is the high genetic heterogeneity of Mendelian diseases in which similar phenotypes are caused by different genes and each gene only accounts for a small proportion of the patients. To overcome this gap, we developed a novel method, the Gene Ranking, Identification and Prediction Tool (GRIPT), for performing case-control analysis of NGS data. Analyses of simulated and real datasets show that GRIPT is well-powered for disease gene discovery, especially for diseases with high locus heterogeneity.Item Two-dimensional lithium diffusion behavior and probable hybrid phase transformation kinetics in olivine lithium iron phosphate(Springer Nature, 2017) Hong, Liang; Li, Linsen; Chen-Wiegart, Yuchen-Karen; Wang, Jiajun; Xiang, Kai; Gan, Liyang; Li, Wenjie; Meng, Fei; Wang, Fan; Wang, Jun; Chiang, Yet-Ming; Jin, Song; Tang, MingOlivine lithium iron phosphate is a technologically important electrode material for lithium-ion batteries and a model system for studying electrochemically driven phase transformations. Despite extensive studies, many aspects of the phase transformation and lithium transport in this material are still not well understood. Here we combine operando hard X-ray spectroscopic imaging and phase-field modeling to elucidate the delithiation dynamics of single-crystal lithium iron phosphate microrods with long-axis along the [010] direction. Lithium diffusivity is found to be two-dimensional in microsized particles containing ~3% lithium-iron anti-site defects. Our study provides direct evidence for the previously predicted surface reaction-limited phase-boundary migration mechanism and the potential operation of a hybrid mode of phase growth, in which phase-boundary movement is controlled by surface reaction or lithium diffusion in different crystallographic directions. These findings uncover the rich phase-transformation behaviors in lithium iron phosphate and intercalation compounds in general and can help guide the design of better electrodes.