Repository logo
English
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of R-3
English
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Wang, Hongxuan"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    A fast analytical model for predicting battery performance under mixed kinetic control
    (Elsevier, 2024) Wang, Hongxuan; Wang, Fan; Tang, Ming
    Predicting battery rate performance traditionally relies on computation-intensive numerical simulations. Although faster, simplified analytical models exist, they usually assume a single rate-limiting process such as solid diffusion or electrolyte transport. Here, an improved analytical model, the uniform-reaction-solid-concentration (URCs) model, is developed for battery (dis)charging under mixed control of mass transport in both solid and electrolyte phases. Compared to previous single-particle models extended to incorporate electrolyte kinetics, URCs captures the impact of salt depletion on diminishing the (dis)charge capacity, a critical phenomenon for thick electrodes and/or at high rates. The model demonstrates good agreement with full-order simulations. Importantly, it is compatible with gradient-based optimization algorithms to efficiently search for the optimal battery configurations, while the numerical simulation method struggles to accurately evaluate the derivatives of the objective function and causes optimization to fail. These features allow our model to effectively complement numerical simulations as a useful computational tool for battery design.
  • About R-3
  • Report a Digital Accessibility Issue
  • Request Accessible Formats
  • Fondren Library
  • Contact Us
  • FAQ
  • Privacy Notice
  • R-3 Policies

Physical Address:

6100 Main Street, Houston, Texas 77005

Mailing Address:

MS-44, P.O.BOX 1892, Houston, Texas 77251-1892