Browsing by Author "Wang, Dawei"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item A review of ultrawide bandgap materials: properties, synthesis and devices(Oxford University Press, 2022) Xu, Mingfei; Wang, Dawei; Fu, Kai; Mudiyanselage, Dinusha Herath; Fu, Houqiang; Zhao, YujiUltrawide bandgap (UWBG) materials such as diamond, Ga2O3, hexagonal boron nitride (h-BN) and AlN, are a new class of semiconductors that possess a wide range of attractive properties, including very large bandgap, high critical electric field, high carrier mobility and chemical inertness. Due to these outstanding characteristics, UWBG materials are promising candidates to enable high-performance devices for power electronics, ultraviolet photonics, quantum sensing and quantum computing applications. Despite their great potential, the research of UWBG semiconductors is still at a nascent stage and represents a challenging interdisciplinary research area of physics, materials science and devices engineering. In this review, the material properties, synthesis methods and device applications of UWBG semiconductors diamond, Ga2O3, h-BN and AlN will be presented and their recent progress, challenges and research opportunities will be discussed.Item β-Ga2O3-Based Heterostructures and Heterojunctions for Power Electronics: A Review of the Recent Advances(MDPI, 2024) Herath Mudiyanselage, Dinusha; Da, Bingcheng; Adivarahan, Jayashree; Wang, Dawei; He, Ziyi; Fu, Kai; Zhao, Yuji; Fu, HouqiangDuring the past decade, Gallium Oxide (Ga2O3) has attracted intensive research interest as an ultra-wide-bandgap (UWBG) semiconductor due to its unique characteristics, such as a large bandgap of 4.5–4.9 eV, a high critical electric field of ~8 MV/cm, and a high Baliga’s figure of merit (BFOM). Unipolar β-Ga2O3 devices such as Schottky barrier diodes (SBDs) and field-effect transistors (FETs) have been demonstrated. Recently, there has been growing attention toward developing β-Ga2O3-based heterostructures and heterojunctions, which is mainly driven by the lack of p-type doping and the exploration of multidimensional device architectures to enhance power electronics’ performance. This paper will review the most recent advances in β-Ga2O3 heterostructures and heterojunctions for power electronics, including NiOx/β-Ga2O3, β-(AlxGa1−x)2O3/β-Ga2O3, and β-Ga2O3 heterojunctions/heterostructures with other wide- and ultra-wide-bandgap materials and the integration of two-dimensional (2D) materials with β-Ga2O3. Discussions of the deposition, fabrication, and operating principles of these heterostructures and heterojunctions and the associated device performance will be provided. This comprehensive review will serve as a critical reference for researchers engaged in materials science, wide- and ultra-wide-bandgap semiconductors, and power electronics and benefits the future study and development of β-Ga2O3-based heterostructures and heterojunctions and associated power electronics.