Repository logo
English
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of R-3
English
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Von Arx, Devin"

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Building and Employing New Digital Resources for the Study of US Scientific Advisors
    (Rice University, 2024) Von Arx, Devin; Traylor, Jordan; Evans, Kenneth; Baker Institute Science and Technology Policy Program
    Policymakers in the United States executive branch increasingly rely on scientific data and analysis to make decisions on a wide range of public policy challenges, from improving public health and strengthening the national economy to nuclear nonproliferation and advancing global diplomacy. This poster outlines the creation of a relational database that enables systemic analysis of the role and impact of individual scientific advisors and advisory bodies involved in U.S. national science, technology, and innovation policymaking across time.
  • Loading...
    Thumbnail Image
    Item
    Employing ML Methods on Digitized FOIA Requests for Improved Discoverability and Policy Research
    (Rice University, 2025) Seaton, Alexa; Xu, Yujie; Von Arx, Devin; Traylor, Jordan; Jin, Ying; Evans, Kenneth Mellinger; Baker Institute, Science and Technology Policy Program
    Born-digital records pose challenges for digital preservation due to their unstructured formats and noncompliance with accessibility standards. This project introduces a modular, open-source workflow to batch process large, mixed media PDFs—many obtained through FOIA requests—by leveraging OCR, AI, and named-entity recognition. Built for the White House Scientists Archive, this system enhances discoverability and usability of digitized records across administrations and supports metadata extraction at scale. Key tools include Mistral AI for OCR, Apache Tika for entity recognition, and a finet uned Mistral model for metadata generation.
  • About R-3
  • Report a Digital Accessibility Issue
  • Request Accessible Formats
  • Fondren Library
  • Contact Us
  • FAQ
  • Privacy Notice
  • R-3 Policies

Physical Address:

6100 Main Street, Houston, Texas 77005

Mailing Address:

MS-44, P.O.BOX 1892, Houston, Texas 77251-1892