Browsing by Author "Versteeg, Leroy"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item A Recombinant Protein XBB.1.5 RBD/Alum/CpG Vaccine Elicits High Neutralizing Antibody Titers against Omicron Subvariants of SARS-CoV-2(2023) Thimmiraju, Syamala Rani; Adhikari, Rakesh; Villar, Maria Jose; Lee, Jungsoon; Liu, Zhuyun; Kundu, Rakhi; Chen, Yi-Lin; Sharma, Suman; Ghei, Karm; Keegan, Brian; Versteeg, Leroy; Gillespie, Portia M.; Ciciriello, Allan; Islam, Nelufa Y.; Poveda, Cristina; Uzcategui, Nestor; Chen, Wen-Hsiang; Kimata, Jason T.; Zhan, Bin; Strych, Ulrich; Bottazzi, Maria Elena; Hotez, Peter J.; Pollet, Jeroen(1) Background: We previously reported the development of a recombinant protein SARS-CoV-2 vaccine, consisting of the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein, adjuvanted with aluminum hydroxide (alum) and CpG oligonucleotides. In mice and non-human primates, our wild-type (WT) RBD vaccine induced high neutralizing antibody titers against the WT isolate of the virus, and, with partners in India and Indonesia, it was later developed into two closely resembling human vaccines, Corbevax and Indovac. Here, we describe the development and characterization of a next-generation vaccine adapted to the recently emerging XBB variants of SARS-CoV-2. (2) Methods: We conducted preclinical studies in mice using a novel yeast-produced SARS-CoV-2 XBB.1.5 RBD subunit vaccine candidate formulated with alum and CpG. We examined the neutralization profile of sera obtained from mice vaccinated twice intramuscularly at a 21-day interval with the XBB.1.5-based RBD vaccine, against WT, Beta, Delta, BA.4, BQ.1.1, BA.2.75.2, XBB.1.16, XBB.1.5, and EG.5.1 SARS-CoV-2 pseudoviruses. (3) Results: The XBB.1.5 RBD/CpG/alum vaccine elicited a robust antibody response in mice. Furthermore, the serum from vaccinated mice demonstrated potent neutralization against the XBB.1.5 pseudovirus as well as several other Omicron pseudoviruses. However, regardless of the high antibody cross-reactivity with ELISA, the anti-XBB.1.5 RBD antigen serum showed low neutralizing titers against the WT and Delta virus variants. (4) Conclusions: Whereas we observed modest cross-neutralization against Omicron subvariants with the sera from mice vaccinated with the WT RBD/CpG/Alum vaccine or with the BA.4/5-based vaccine, the sera raised against the XBB.1.5 RBD showed robust cross-neutralization. These findings underscore the imminent opportunity for an updated vaccine formulation utilizing the XBB.1.5 RBD antigen.Item Receptor-binding domain recombinant protein on alum-CpG induces broad protection against SARS-CoV-2 variants of concern(Elsevier, 2022) Pollet, Jeroen; Strych, Ulrich; Chen, Wen-Hsiang; Versteeg, Leroy; Keegan, Brian; Zhan, Bin; Wei, Junfei; Liu, Zhuyun; Lee, Jungsoon; Kundu, Rahki; Adhikari, Rakesh; Poveda, Cristina; Jose Villar, Maria; Rani Thimmiraju, Syamala; Lopez, Brianna; Gillespie, Portia M.; Ronca, Shannon; Kimata, Jason T.; Reers, Martin; Paradkar, Vikram; Hotez, Peter J.; Elena Bottazzi, Maria; James A. Baker III Institute for Public PolicyWe conducted preclinical studies in mice using a yeast-produced SARS-CoV-2 RBD subunit vaccine candidate formulated with aluminum hydroxide (alum) and CpG deoxynucleotides. This formulation is equivalent to the CorbevaxTM vaccine that recently received emergency use authorization by the Drugs Controller General ofIndia. We compared the immune response of mice vaccinated with RBD/alum to mice vaccinated with RBD/alum + CpG. We also evaluated mice immunized with RBD/alum + CpG and boosted with RBD/alum. Mice were immunized twice intramuscularly at a 21-day interval. Compared to two doses of the /alum formulation, the RBD/alum + CpG vaccine induced a stronger and more balanced Th1/Th2 cellular immune response, with high levels of neutralizing antibodies against the original Wuhan isolate of SARS-CoV-2 as well as the B.1.1.7 (Alpha), B.1.351 (Beta), B.1.617.2 and (Delta) variants. Neutralizing antibody titers against the B.1.1.529 (BA.1, Omicron) variant exceeded those in human convalescent plasma after Wuhan infection but were lower than against the other variants. Interestingly, the second dose did not benefit from the addition of CpG, possibly allowing dose-sparing of the adjuvant in the future. The data reported here reinforces that the RBD/alum + CpG vaccine formulation is suitable for inducing broadly neutralizing antibodies against SARS-CoV-2, including variants of concern.Item Vaccine-linked chemotherapy improves cardiac structure and function in a mouse model of chronic Chagas disease(Frontiers, 2023) Jones, Kathryn M.; Mangin, Elise N.; Reynolds, Corey L.; Villanueva, Liliana E.; Cruz, Julio Vladimir; Versteeg, Leroy; Keegan, Brian; Kendricks, April; Pollet, Jeroen; Gusovsky, Fabian; Bottazzi, Maria Elena; Hotez, Peter J.; James A. Baker III Institute for Public PolicyIntroduction: Chagas disease, caused by chronic infection with the protozoan parasite Trypanosoma cruzi, affects 6-7 million people worldwide. The major clinical manifestation of Chagas disease is chronic Chagasic cardiomyopathy (CCC), which encompasses a spectrum of symptoms including arrhythmias, hypertrophy, dilated cardiomyopathy, heart failure, and sudden death. Current treatment is limited to two antiparasitic drugs, benznidazole (BNZ) and nifurtimox, but both have limited efficacy to halt the progression of CCC. We developed a vaccine-linked chemotherapy strategy using our vaccine consisting of recombinant Tc24-C4 protein and a TLR-4 agonist adjuvant in a stable squalene emulsion, in combination with low dose benznidazole treatment. We previously demonstrated in acute infection models that this strategy parasite specific immune responses, and reduced parasite burdens and cardiac pathology. Here, we tested our vaccine-linked chemotherapy strategy in a mouse model of chronic T. cruzi infection to evaluate the effect on cardiac function.Methods: Female BALB/c mice infected with 500 blood form T. cruzi H1 strain trypomastigotes were treated beginning 70 days after infection with a low dose of BNZ and either low or high dose of vaccine, in both sequential and concurrent treatments streams. Control mice were untreated, or administered only one treatment. Cardiac health was monitored throughout the course of treatment by echocardiography and electrocardiograms. Approximately 8 months after infection, endpoint histopathology was performed to measure cardiac fibrosis and cellular infiltration.ResultsVaccine-linked chemotherapy improved cardiac function as evidenced by amelioration of altered left ventricular wall thickness, left ventricular diameter, as well as ejection fraction and fractional shortening by approximately 4 months of infection, corresponding to two months after treatment was initiated. At study endpoint, vaccine-linked chemotherapy reduced cardiac cellular infiltration, and induced significantly increased antigen specific IFN-γ and IL-10 release from splenocytes, as well as a trend toward increased IL-17A.Discussion: These data suggest that vaccine-linked chemotherapy ameliorates changes in cardiac structure and function induced by infection with T. cruzi. Importantly, similar to our acute model, the vaccine-linked chemotherapy strategy induced durable antigen specific immune responses, suggesting the potential for a long lasting protective effect. Future studies will evaluate additional treatments that can further improve cardiac function during chronic infection.