Browsing by Author "Vergara, Mauricio"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Differential Effect of Culture Temperature and Specific Growth Rate on CHO Cell Behavior in Chemostat Culture(Public Library of Science, 2014) Vergara, Mauricio; Becerra, Silvana; Berrios, Julio; Osses, Nelson; Reyes, Juan; Rodriguez-Moya, Maria; Gonzalez, Ramon; Altamirano, Claudia; Bioengineering; Chemical and Biomolecular EngineeringMild hypothermia condition in mammalian cell culture technology has been one of the main focuses of research for the development of breeding strategies to maximize productivity of these production systems. Despite the large number of studies that show positive effects of mild hypothermia on specific productivity of r-proteins, no experimental approach has addressed the indirect effect of lower temperatures on specific cell growth rate, nor how this condition possibly affects less specific productivity of r-proteins. To separately analyze the effects of mild hypothermia and specific growth rate on CHO cell metabolism and recombinant human tissue plasminogen activator productivity as a model system, high dilution rate (0.017 h21) and low dilution rate (0.012 h21) at two cultivation temperatures (37 and 33ᄚC) were evaluated using chemostat culture. The results showed a positive effect on the specific productivity of r-protein with decreasing specific growth rate at 33ᄚC. Differential effect was achieved by mild hypothermia on the specific productivity of r-protein, contrary to the evidence reported in batch culture. Interestingly, reduction of metabolism could not be associated with a decrease in culture temperature, but rather with a decrease in specific growth rate.Item Endoplasmic Reticulum-Associated rht-PA Processing in CHO Cells: Influence of Mild Hypothermia and Specific Growth Rates in Batch and Chemostat Cultures(Public Library of Science, 2015) Vergara, Mauricio; Berrios, Julio; Martínez, Irene; Díaz-Barrera, Alvaro; Acevedo, Cristian; Reyes, Juan G.; Gonzalez, Ramon; Altamirano, Claudia; Bioengineering; Chemical and Biomolecular EngineeringBackground: Chinese hamster ovary (CHO) cells are the main host for producing recombinant proteins with human therapeutic applications mainly because of their capability to perform proper folding and glycosylation processes. In addition, mild hypothermia is one of the main strategies for maximising the productivity of these systems. However, little information is available on the effect of culture temperature on the folding and degradation processes of recombinant proteins that takes place in the endoplasmic reticulum. Methods: In order to evaluate the effect of the mild hypothermia on processing/endoplasmatic reticulum-associated degradation (ERAD) processes, batch cultures of CHO cells producing recombinant human tissue plasminogen activator (rht-PA) were carried out at two temperatures (37°C and 33°C) and treated with specific inhibitors of glycosylation and ERAD I (Ubiquitin/Proteasome system) or ERAD II (Autophagosoma/Lisosomal system) pathways. The effect of mild hypothermia was analysed separately from its indirect effect on specific cell growth rate. To do this, chemostat cultures were carried out at the same incubation conditions as the batch cultures, controlling cell growth at high (0.017 h-1) and low (0.012 h-1) dilution rates. For a better understanding of the investigated phenomenon, cell behaviour was also analysed using principal component analysis (PCA). Results and Conclusion: Results suggest that rht-PA is susceptible to degradation by both ERAD pathways studied, revealing that processing and/or ERAD processes are sensitive to temperature cultivation in batch culture. Moreover, by isolating the effect of culture temperature from the effect of cell growth rate verifyed by using chemostat cultures, we have found that processing and/or ERAD processes are more sensitive to reduction in specific growth rate than low temperature, and that temperature reduction may have a positive effect on protein processing. Interestingly, PCA indicated that the integrated performance displayed by CHO cells is modulated predominantly by specific growth rate, indicating that the culture temperature has a lower weighted effect within the range of conditions evaluated in this work.