Repository logo
English
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of R-3
English
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Vardi, Moshe V"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    A Constraint and Sampling-Based Approach to Integrated Task and Motion Planning
    (2014-09-30) Prabhu, Sailesh Naveena; Chaudhuri, Swarat; Kavraki, Lydia E; McLurkin, James; Vardi, Moshe V
    This thesis tackles the Integrated Task and Motion Planning (ITMP) Problem. The ITMP problem extends classical task planning with actions that require a motion plan. The agent seeks a sequence of actions and the necessary motions to achieve the goal. The user partially specifies the task plan by providing the actions' known parameters. An SMT solver, then, discovers values for the unkown parameters that satisfies constraints requiring the task plan to achieve the goal. The SMT solver utilizes an annotated Probabilistic Roadmap (PRM) to query for motion planning information. A sampling algorithm generates the PRM's vertices to permit a mobile manipulator to grasp numerous object configurations. Each iteration samples several base configurations and adds a base configuration to the PRM that increases the object configurations grasped from its vertices. Our results indicate that increasing the samples per iteration improves the probability the SMT solver discovers a satisfying assignment without adversely affecting the resulting task plan.
  • About R-3
  • Report a Digital Accessibility Issue
  • Request Accessible Formats
  • Fondren Library
  • Contact Us
  • FAQ
  • Privacy Notice
  • R-3 Policies

Physical Address:

6100 Main Street, Houston, Texas 77005

Mailing Address:

MS-44, P.O.BOX 1892, Houston, Texas 77251-1892