Repository logo
English
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of R-3
English
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Vankov, Emilian R."

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Filtering and Estimation for a Class of Stochastic Volatility Models with Intractable Likelihoods
    (Project Euclid, 2019) Vankov, Emilian R.; Guindani, Michele; Ensor, Katherine B.
    We introduce a new approach to latent state filtering and parameter estimation for a class of stochastic volatility models (SVMs) for which the likelihood function is unknown. The α-stable stochastic volatility model provides a flexible framework for capturing asymmetry and heavy tails, which is useful when modeling financial returns. However, the α-stable distribution lacks a closed form for the probability density function, which prevents the direct application of standard Bayesian filtering and estimation techniques such as sequential Monte Carlo and Markov chain Monte Carlo. To obtain filtered volatility estimates, we develop a novel approximate Bayesian computation (ABC) based auxiliary particle filter, which provides improved performance through better proposal distributions. Further, we propose a new particle based MCMC (PMCMC) method for joint estimation of the parameters and latent volatility states. With respect to other extensions of PMCMC, we introduce an efficient single filter particle Metropolis-within-Gibbs algorithm which can be applied for obtaining inference on the parameters of an asymmetric α-stable stochastic volatility model. We show the increased efficiency in the estimation process through a simulation study. Finally, we highlight the necessity for modeling asymmetric α-stable SVMs through an application to propane weekly spot prices.
  • Loading...
    Thumbnail Image
    Item
    Temporal and spectral characteristics of dynamic functional connectivity between resting-state networks reveal information beyond static connectivity
    (Public Library of Science, 2018) Chiang, Sharon; Vankov, Emilian R.; Yeh, Hsiang J.; Guindani, Michele; Vannucci, Marina; Haneef, Zulfi; Stern, John M.
    Estimation of functional connectivity (FC) has become an increasingly powerful tool for investigating healthy and abnormal brain function. Static connectivity, in particular, has played a large part in guiding conclusions from the majority of resting-state functional MRI studies. However, accumulating evidence points to the presence of temporal fluctuations in FC, leading to increasing interest in estimating FC as a dynamic quantity. One central issue that has arisen in this new view of connectivity is the dramatic increase in complexity caused by dynamic functional connectivity (dFC) estimation. To computationally handle this increased complexity, a limited set of dFC properties, primarily the mean and variance, have generally been considered. Additionally, it remains unclear how to integrate the increased information from dFC into pattern recognition techniques for subject-level prediction. In this study, we propose an approach to address these two issues based on a large number of previously unexplored temporal and spectral features of dynamic functional connectivity. A Generalized Autoregressive Conditional Heteroskedasticity (GARCH) model is used to estimate time-varying patterns of functional connectivity between resting-state networks. Time-frequency analysis is then performed on dFC estimates, and a large number of previously unexplored temporal and spectral features drawn from signal processing literature are extracted for dFC estimates. We apply the investigated features to two neurologic populations of interest, healthy controls and patients with temporal lobe epilepsy, and show that the proposed approach leads to substantial increases in predictive performance compared to both traditional estimates of static connectivity as well as current approaches to dFC. Variable importance is assessed and shows that there are several quantities that can be extracted from dFC signal which are more informative than the traditional mean or variance of dFC. This work illuminates many previously unexplored facets of the dynamic properties of functional connectivity between resting-state networks, and provides a platform for dynamic functional connectivity analysis that facilitates its usage as an investigative measure for healthy as well as abnormal brain function.
  • About R-3
  • Report a Digital Accessibility Issue
  • Request Accessible Formats
  • Fondren Library
  • Contact Us
  • FAQ
  • Privacy Notice
  • R-3 Policies

Physical Address:

6100 Main Street, Houston, Texas 77005

Mailing Address:

MS-44, P.O.BOX 1892, Houston, Texas 77251-1892