Repository logo
English
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of R-3
English
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "VandenBoom, Tom"

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Isospectral dynamics of reflectionless Jacobi operators
    (2018-04-02) VandenBoom, Tom; Damanik, David
    This thesis focuses on the isospectral torus of reflectionless Jacobi operators and the dynamics of its automorphisms. The novel perspective which it hopes to advertise is one of the joint utility of inverse spectral theoretic techniques and dynamical techniques to address direct and inverse spectral problems, respectively. Concretely, we use the former perspective to prove the reducibility of the shift cocycle for certain reflectionless Jacobi operators, and we use the latter perspective to prove spectral atypicality of discrete Schroedinger operators.
  • Loading...
    Thumbnail Image
    Item
    Positive Lyapunov exponents and a Large Deviation Theorem for continuum Anderson models, briefly
    (Elsevier, 2019) Bucaj, Valmir; Damanik, David; Fillman, Jake; Gerbuz, Vitaly; VandenBoom, Tom; Wang, Fengpeng; Zhang, Zhenghe
    In this short note, we prove positivity of the Lyapunov exponent for 1D continuum Anderson models by leveraging some classical tools from inverse spectral theory. The argument is much simpler than the existing proof due to Damanik–Sims–Stolz, and it covers a wider variety of random models. Along the way we note that a Large Deviation Theorem holds uniformly on compacts.
  • About R-3
  • Report a Digital Accessibility Issue
  • Request Accessible Formats
  • Fondren Library
  • Contact Us
  • FAQ
  • Privacy Notice
  • R-3 Policies

Physical Address:

6100 Main Street, Houston, Texas 77005

Mailing Address:

MS-44, P.O.BOX 1892, Houston, Texas 77251-1892