Browsing by Author "Valenti, Jeff A."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Magnetically Controlled Accretion on the Classical T Tauri Stars GQ Lupi and TQ Hydrae(The American Astronomical Society, 2013) Johns-Krull, Christopher M.; Chen, Wei; Valenti, Jeff A.; Jeffers, Sandra V.; Piskunov, Nikolai E.; Kochukhov, Oleg; Makaganiuk, V.; Stempels, H.C.; Snik, Frans; Keller, Christoph; Rodenhuis, M.We present high spectral resolution (R ≈ 108,000) Stokes V polarimetry of the classical T Tauri stars (CTTSs) GQ Lup and TW Hya obtained with the polarimetric upgrade to the HARPS spectrometer on the ESO 3.6 m telescope. We present data on both photospheric lines and emission lines, concentrating our discussion on the polarization properties of the He i emission lines at 5876 Å and 6678 Å. The He i lines in these CTTSs contain both narrow emission cores, believed to come from near the accretion shock region on these stars, and broad emission components which may come from either a wind or the large-scale magnetospheric accretion flow.We detect strong polarization in the narrow component of the two He i emission lines in both stars. We observe a maximum implied field strength of 6.05 ± 0.24 kG in the 5876 Å line of GQ Lup, making it the star with the highest field strength measured in this line for a CTTS. We find field strengths in the two He i lines that are consistent with each other, in contrast to what has been reported in the literature on at least one star. We do not detect any polarization in the broad component of the He i lines on these stars, strengthening the conclusion that they form over a substantially different volume relative to the formation region of the narrow component of the He i lines.Item Twenty-five Years of Accretion onto the Classical T Tauri Star TW Hya(IOP Publishing Ltd, 2023) Herczeg, Gregory J.; Chen, Yuguang; Donati, Jean-Francois; Dupree, Andrea K.; Walter, Frederick M.; Hillenbrand, Lynne A.; Johns-Krull, Christopher M.; Manara, Carlo F.; Günther, Hans Moritz; Fang, Min; Schneider, P. Christian; Valenti, Jeff A.; Alencar, Silvia H. P.; Venuti, Laura; Alcalá, Juan Manuel; Frasca, Antonio; Arulanantham, Nicole; Linsky, Jeffrey L.; Bouvier, Jerome; Brickhouse, Nancy S.; Calvet, Nuria; Espaillat, Catherine C.; Campbell-White, Justyn; Carpenter, John M.; Chang, Seok-Jun; Cruz, Kelle L.; Dahm, S. E.; Eislöffel, Jochen; Edwards, Suzan; Fischer, William J.; Guo, Zhen; Henning, Thomas; Ji, Tao; Jose, Jessy; Kastner, Joel H.; Launhardt, Ralf; Principe, David A.; Robinson, Connor E.; Serna, Javier; Siwak, Michal; Sterzik, Michael F.; Takasao, ShinsukeAccretion plays a central role in the physics that governs the evolution and dispersal of protoplanetary disks. The primary goal of this paper is to analyze the stability over time of the mass accretion rate onto TW Hya, the nearest accreting solar-mass young star. We measure veiling across the optical spectrum in 1169 archival high-resolution spectra of TW Hya, obtained from 1998–2022. The veiling is then converted to accretion rate using 26 flux-calibrated spectra that cover the Balmer jump. The accretion rate measured from the excess continuum has an average of 2.51 × 10−9 M ⊙ yr−1 and a Gaussian distribution with an FWHM of 0.22 dex. This accretion rate may be underestimated by a factor of up to 1.5 because of uncertainty in the bolometric correction and another factor of 1.7 because of excluding the fraction of accretion energy that escapes in lines, especially Lyα. The accretion luminosities are well correlated with He line luminosities but poorly correlated with Hα and Hβ luminosity. The accretion rate is always flickering over hours but on longer timescales has been stable over 25 years. This level of variability is consistent with previous measurements for most, but not all, accreting young stars.