Browsing by Author "Valdivia, P."
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item Experimental elucidation of the origin of the ‘double spin resonances’ in Ba(Fe1−xCox)2As2(American Physical Society, 2016) Wang, Meng; Yi, M.; Sun, H. L.; Valdivia, P.; Kim, M.G.; Xu, Z. J.; Berlijn, T.; Christianson, A.D.; Chi, Songxue; Hashimoto, M.; Lu, D.H.; Li, X.D.; Bourret-Courchesne, E.; Dai, Pengcheng; Lee, D.H.; Maier, T.A.; Birgeneau, R.J.We report a combined study of the spin resonances and superconducting gaps for underdoped (Tc=19 K), optimally doped (Tc=25 K), and overdoped (Tc=19 K) Ba(Fe1−xCox)2As2 single crystals with inelastic neutron scattering and angle resolved photoemission spectroscopy. We find a quasi-two-dimensional spin resonance whose energy scales with the superconducting gap in all three compounds. In addition, anisotropic low energy spin excitation enhancements in the superconducting state have been deduced and characterized for the under and optimally doped compounds. Our data suggest that the quasi-two-dimensional spin resonance is a spin exciton that corresponds to the spin singlet-triplet excitations of the itinerant electrons. However, the intensity enhancements of the anisotropic spin excitations are dominated by the out-of-plane spin excitations of the ordered moments due to the suppression of damping in the superconducting state. Hence we offer an interpretation of the double energy scales differing from previous interpretations based on anisotropic superconducting energy gaps and systematically explain the doping-dependent trend across the phase diagram.Item Spin waves and spatially anisotropic exchange interactions in the $S=2$ stripe antiferromagnet ${\mathrm{Rb}}_{0.8}{\mathrm{Fe}}_{1.5}{\mathrm{S}}_{2}$(American Physical Society, 2015) Wang, Meng; Valdivia, P.; Yi, Ming; Chen, J.X.; Zhang, W.L.; Ewings, R.A.; Perring, T.G.; Zhao, Yang; Harriger, L.W.; Lynn, J.W.; Bourret-Courchesne, E.; Dai, Pengcheng; Lee, D.H.; Yao, D. X.; Birgeneau, R.J.An inelastic neutron scattering study of the spin waves corresponding to the stripe antiferromagnetic order in insulating Rb0.8Fe1.5S2 throughout the Brillouin zone is reported. The spin wave spectra are well described by a Heisenberg Hamiltonian with anisotropic in-plane exchange interactions. Integrating the ordered moment and the spin fluctuations results in a total moment squared of 27.6±4.2μ2B/Fe, consistent with S≈2. Unlike XFe2As2 (X=Ca, Sr, and Ba), where the itinerant electrons have a significant contribution, our data suggest that this stripe antiferromagnetically ordered phase in Rb0.8Fe1.5S2 is a Mott-like insulator with fully localized 3d electrons and a high-spin ground state configuration. Nevertheless, the anisotropic exchange couplings appear to be universal in the stripe phase of Fe pnictides and chalcogenides.Item Spin waves and spatially anisotropic exchange interactions in the S=2 stripe antiferromagnet Rb0.8Fe1.5S2(American Physical Society, 2015) Wang, Meng; Valdivia, P.; Yi, Ming; Chen, J.X.; Zhang, W.L.; Ewings, R.A.; Perring, T.G.; Zhao, Yang; Harriger, L.W.; Lynn, J.W.; Bourret-Courchesne, E.; Dai, Pengcheng; Lee, D.H.; Yao, D.X.; Birgeneau, R.J.An inelastic neutron scattering study of the spin waves corresponding to the stripe antiferromagnetic order in insulating Rb0.8Fe1.5S2 throughout the Brillouin zone is reported. The spin wave spectra are well described by a Heisenberg Hamiltonian with anisotropic in-plane exchange interactions. Integrating the ordered moment and the spin fluctuations results in a total moment squared of 27.6±4.2μ2B/Fe, consistent with S≈2. Unlike XFe2As2 (X=Ca, Sr, and Ba), where the itinerant electrons have a significant contribution, our data suggest that this stripe antiferromagnetically ordered phase in Rb0.8Fe1.5S2 is a Mott-like insulator with fully localized 3d electrons and a high-spin ground state configuration. Nevertheless, the anisotropic exchange couplings appear to be universal in the stripe phase of Fe pnictides and chalcogenides.Item Two spatially separated phases in semiconducting Rb0.8Fe1.5S2(American Physical Society, 2014) Wang, Meng; Tian, Wei; Valdivia, P.; Chi, Songxue; Bourret-Courchesne, E.; Dai, Pengcheng; Birgeneau, R.J.We report neutron scattering and transport measurements on semiconducting Rb0.8Fe1.5S2, a compound isostructural and isoelectronic to the well-studied A0.8FeySe2(A=K,Rb,Cs,Tl/K) superconducting systems. Both resistivity and dc susceptibility measurements reveal a magnetic phase transition at T=275K. Neutron diffraction studies show that the 275 K transition originates from a phase with rhombic iron vacancy order which exhibits an in-plane stripe antiferromagnetic ordering below 275 K. In addition, the stripe antiferromagnetic phase interdigitates mesoscopically with an ubiquitous phase with 5√×5√ iron vacancy order. This phase has a magnetic transition at TN=425K and an iron vacancy order-disorder transition at TS=600K. These two different structural phases are closely similar to those observed in the isomorphous Se materials. Based on the close similarities of the in-plane antiferromagnetic structures, moments sizes, and ordering temperatures in semiconducting Rb0.8Fe1.5S2 and K0.81Fe1.58Se2, we argue that the in-plane antiferromagnetic order arises from strong coupling between local moments. Superconductivity, previously observed in the A0.8FeySe2−zSz system, is absent in Rb0.8Fe1.5S2, which has a semiconducting ground state. The implied relationship between stripe and block antiferromagnetism and superconductivity in these materials as well as a strategy for further investigation is discussed in this paper.