Repository logo
English
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of R-3
English
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Vadakkan, Tegy J."

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Cancer-Associated Fibroblasts Induce a Collagen Cross-link Switch in Tumor Stroma
    (American Association for Cancer Research, 2016) Pankova, Daniela; Chen, Yulong; Terajima, Masahiko; Schliekelman, Mark J.; Baird, Brandi N.; Fahrenholtz, Monica; Sun, Li; Gill, Bartley J.; Vadakkan, Tegy J.; Kim, Min P.; Ahn, Young-Ho; Roybal, Jonathon D.; Liu, Xin; Cuentas, Edwin Roger Parra; Rodriguez, Jaime; Wistuba, Ignacio I.; Creighton, Chad J.; Gibbons, Don L.; Hicks, John M.; Dickinson, Mary E.; West, Jennifer L.; Grande-Allen, K. Jane; Hanash, Samir M.; Yamauchi, Mitsuo; Kurie, Jonathan M.; Bioengineering
    Intratumoral collagen cross-links heighten stromal stiffness and stimulate tumor cell invasion, but it is unclear how collagen cross-linking is regulated in epithelial tumors. To address this question, we used KrasLA1 mice, which develop lung adenocarcinomas from somatic activation of a KrasG12D allele. The lung tumors in KrasLA1 mice were highly fibrotic and contained cancer-associated fibroblasts (CAF) that produced collagen and generated stiffness in collagen gels. In xenograft tumors generated by injection of wild-type mice with lung adenocarcinoma cells alone or in combination with CAFs, the total concentration of collagen cross-links was the same in tumors generated with or without CAFs, but coinjected tumors had higher hydroxylysine aldehyde–derived collagen cross-links (HLCC) and lower lysine-aldehyde–derived collagen cross-links (LCCs). Therefore, we postulated that an LCC-to-HLCC switch induced by CAFs promotes the migratory and invasive properties of lung adenocarcinoma cells. To test this hypothesis, we created coculture models in which CAFs are positioned interstitially or peripherally in tumor cell aggregates, mimicking distinct spatial orientations of CAFs in human lung cancer. In both contexts, CAFs enhanced the invasive properties of tumor cells in three-dimensional (3D) collagen gels. Tumor cell aggregates that attached to CAF networks on a Matrigel surface dissociated and migrated on the networks. Lysyl hydroxylase 2 (PLOD2/LH2), which drives HLCC formation, was expressed in CAFs, and LH2 depletion abrogated the ability of CAFs to promote tumor cell invasion and migration.
  • Loading...
    Thumbnail Image
    Item
    Improved Angiogenesis in Response to Localized Delivery of Macrophage-Recruiting Molecules
    (Public Library of Science, 2015) Hsu, Chih-Wei; Poché, Ross A.; Saik, Jennifer E.; Ali, Saniya; Wang, Shang; Yosef, Nejla; Calderon, Gisele A.; Scott, Larry Jr.; Vadakkan, Tegy J.; Larina, Irina V.; West, Jennifer L.; Dickinson, Mary E.; Bioengineering
    Successful engineering of complex organs requires improved methods to promote rapid and stable vascularization of artificial tissue scaffolds. Toward this goal, tissue engineering strategies utilize the release of pro-angiogenic growth factors, alone or in combination, from biomaterials to induce angiogenesis. In this study we have used intravital microscopy to define key, dynamic cellular changes induced by the release of pro-angiogenic factors from polyethylene glycol diacrylate hydrogels transplanted in vivo. Our data show robust macrophage recruitment when the potent and synergistic angiogenic factors, PDGFBB and FGF2 were used as compared with VEGF alone and intravital imaging suggested roles for macrophages in endothelial tip cell migration and anastomosis, as well as pericyte-like behavior. Further data from in vivo experiments show that delivery of CSF1 with VEGF can dramatically improve the poor angiogenic response seen with VEGF alone. These studies show that incorporating macrophage-recruiting factors into the design of pro-angiogenic biomaterial scaffolds is a key strategy likely to be necessary for stable vascularization and survival of implanted artificial tissues.
  • About R-3
  • Report a Digital Accessibility Issue
  • Request Accessible Formats
  • Fondren Library
  • Contact Us
  • FAQ
  • Privacy Notice
  • R-3 Policies

Physical Address:

6100 Main Street, Houston, Texas 77005

Mailing Address:

MS-44, P.O.BOX 1892, Houston, Texas 77251-1892