Repository logo
English
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of R-3
English
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Uzuner, Mete"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Bursts from High-magnetic-field Pulsars Swift J1818.0-1607 and PSR J1846.4-0258
    (IOP Publishing, 2022) Uzuner, Mete; Keskin, Özge; Kaneko, Yuki; Göğüş, Ersin; Roberts, Oliver J.; Lin, Lin; Baring, Matthew G.; Güngör, Can; Kouveliotou, Chryssa; Horst, Alexander J. van der; Younes, George
    The detection of magnetar-like bursts from highly magnetic (B > 1013 G) rotation-powered pulsars (RPPs) opened the magnetar population to yet another group of neutron stars. At the same time the question arose as to whether magnetar-like bursts from high-B RPPs have similar characteristics to bursts from known magnetar sources. We present here our analyses of the Fermi Gamma-ray Burst Monitor (GBM) data from two magnetar candidates, Swift J1818.0−1607 (a radio-loud magnetar) and PSR J1846.4−0258. Both sources entered active bursting episodes in 2020 triggering Fermi-GBM in 2020 and in early 2021. We searched for untriggered bursts from both sources and performed temporal and spectral analyses on all events. Here, we present the results of our comprehensive burst search and analyses. We identified 37 and 58 bursts that likely originated from Swift J1818.0−1607 and PSR J1846.4−0258, respectively. We find that the bursts from these sources are shorter on average than typical magnetar bursts. In addition, their spectra are best described with a single blackbody function with kT ∼ 10–11 keV; several relatively bright events, however, show higher energy emission that could be modeled with a cutoff power-law model. We find that the correlation between the blackbody emitting area and the spectral temperature for the burst ensemble of each pulsar deviates from the ideal Stefan–Boltzmann law, as it does for some burst-active magnetars. We interpret this characteristic as being due to the significant radiation anisotropy expected from optically thick plasmas in very strong magnetic fields.
  • About R-3
  • Report a Digital Accessibility Issue
  • Request Accessible Formats
  • Fondren Library
  • Contact Us
  • FAQ
  • Privacy Notice
  • R-3 Policies

Physical Address:

6100 Main Street, Houston, Texas 77005

Mailing Address:

MS-44, P.O.BOX 1892, Houston, Texas 77251-1892