Browsing by Author "Ulbrich, Stefan"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item A Globally Convergent Primal-Dual Interior-Point Filter Method for Nonconvex Nonlinear Programming(2000-04) Ulbrich, Michael; Ulbrich, Stefan; Vicente, Luis N.In this paper, the filter technique of Fletcher and Leyffer (1997) is used to globalize the primal-dual interior-point algorithm for nonlinear programming, avoiding the use of merit functions and the updating of penalty parameters. The new algorithm decomposes the primal-dual step obtained from the perturbed first-order necessary conditions into a normal and a tangential step, whose sizes are controlled by a trust-region type parameter. Each entry in the filter is a pair of coordinates: one resulting from feasibility and centrality, and associated with the normal step; the other resulting from optimality (complementarity and duality), and related with the tangential step. Global convergence to first-order critical points is proved for the new primal-dual interior-point filter algorithm.Item A Sensitivity and Adjoint Calculus for Discontinuous Solutions of Hyperbolic Conservation Laws with Source Terms(2000-03) Ulbrich, StefanWe present a sensitivity and adjoint calculus for the control of entropy solutions of scalar conservation laws with controlled initial data and source term. The sensitivity analysis is based on shift-variations which are the sum of a standard variation and suitable corrections by weighted indicator functions approximating the movement of the shock locations. Based on a first order approximation by shift-variations in L1 we introduce the concept of shift-differentiability which is applicable to operators having functions with moving discontinuities as images and implies differentiability for a large class of tracking-type functionals. In the main part of the paper we show that entropy solutions are generically shift-differentiable at almost all times t > 0 with respect to the control. Hereby we admit shift-variations for the initial data which allows to use the shift-differentiability result repeatedly over time slabs. This is useful for the design of optimization methods with time domain decomposition. Our analysis, especially of the shock sensitivity, combines structural results by using generalized characteristics and an adjoint argument. Our adjoint based shock sensitivity analysis does not require to restrict the richness of the shock structure a priori and admits shock generation points. The analysis is based on stability results for the adjoint transport equation with discontinuous coefficients satisfying a one-sided Lipschitz condition. As a further main result we derive and justify an adjoint representation for the derivative of a large class of tracking-type functionals.