Browsing by Author "Turchinovich, Dmitry"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item The 2023 terahertz science and technology roadmap(IOP Publishing, 2023) Leitenstorfer, Alfred; Moskalenko, Andrey S.; Kampfrath, Tobias; Kono, Junichiro; Castro-Camus, Enrique; Peng, Kun; Qureshi, Naser; Turchinovich, Dmitry; Tanaka, Koichiro; Markelz, Andrea G.; Havenith, Martina; Hough, Cameron; Joyce, Hannah J.; Padilla, Willie J.; Zhou, Binbin; Kim, Ki-Yong; Zhang, Xi-Cheng; Jepsen, Peter Uhd; Dhillon, Sukhdeep; Vitiello, Miriam; Linfield, Edmund; Davies, A. Giles; Hoffmann, Matthias C.; Lewis, Roger; Tonouchi, Masayoshi; Klarskov, Pernille; Seifert, Tom S.; Gerasimenko, Yaroslav A.; Mihailovic, Dragan; Huber, Rupert; Boland, Jessica L.; Mitrofanov, Oleg; Dean, Paul; Ellison, Brian N.; Huggard, Peter G.; Rea, Simon P.; Walker, Christopher; Leisawitz, David T.; Gao, Jian Rong; Li, Chong; Chen, Qin; Valušis, Gintaras; Wallace, Vincent P.; Pickwell-MacPherson, Emma; Shang, Xiaobang; Hesler, Jeffrey; Ridler, Nick; Renaud, Cyril C.; Kallfass, Ingmar; Nagatsuma, Tadao; Zeitler, J. Axel; Arnone, Don; Johnston, Michael B.; Cunningham, JohnTerahertz (THz) radiation encompasses a wide spectral range within the electromagnetic spectrum that extends from microwaves to the far infrared (100 GHz–∼30 THz). Within its frequency boundaries exist a broad variety of scientific disciplines that have presented, and continue to present, technical challenges to researchers. During the past 50 years, for instance, the demands of the scientific community have substantially evolved and with a need for advanced instrumentation to support radio astronomy, Earth observation, weather forecasting, security imaging, telecommunications, non-destructive device testing and much more. Furthermore, applications have required an emergence of technology from the laboratory environment to production-scale supply and in-the-field deployments ranging from harsh ground-based locations to deep space. In addressing these requirements, the research and development community has advanced related technology and bridged the transition between electronics and photonics that high frequency operation demands. The multidisciplinary nature of THz work was our stimulus for creating the 2017 THz Science and Technology Roadmap (Dhillon et al 2017 J. Phys. D: Appl. Phys. 50 043001). As one might envisage, though, there remains much to explore both scientifically and technically and the field has continued to develop and expand rapidly. It is timely, therefore, to revise our previous roadmap and in this 2023 version we both provide an update on key developments in established technical areas that have important scientific and public benefit, and highlight new and emerging areas that show particular promise. The developments that we describe thus span from fundamental scientific research, such as THz astronomy and the emergent area of THz quantum optics, to highly applied and commercially and societally impactful subjects that include 6G THz communications, medical imaging, and climate monitoring and prediction. Our Roadmap vision draws upon the expertise and perspective of multiple international specialists that together provide an overview of past developments and the likely challenges facing the field of THz science and technology in future decades. The document is written in a form that is accessible to policy makers who wish to gain an overview of the current state of the THz art, and for the non-specialist and curious who wish to understand available technology and challenges. A such, our experts deliver a ‘snapshot’ introduction to the current status of the field and provide suggestions for exciting future technical development directions. Ultimately, we intend the Roadmap to portray the advantages and benefits of the THz domain and to stimulate further exploration of the field in support of scientific research and commercial realisation.Item Ultrastrong magnon–magnon coupling dominated by antiresonant interactions(Springer Nature, 2021) Makihara, Takuma; Hayashida, Kenji; Noe Ii, G. Timothy; Li, Xinwei; Marquez Peraca, Nicolas; Ma, Xiaoxuan; Jin, Zuanming; Ren, Wei; Ma, Guohong; Katayama, Ikufumi; Takeda, Jun; Nojiri, Hiroyuki; Turchinovich, Dmitry; Cao, Shixun; Bamba, Motoaki; Kono, JunichiroExotic quantum vacuum phenomena are predicted in cavity quantum electrodynamics systems with ultrastrong light-matter interactions. Their ground states are predicted to be vacuum squeezed states with suppressed quantum fluctuations owing to antiresonant terms in the Hamiltonian. However, such predictions have not been realized because antiresonant interactions are typically negligible compared to resonant interactions in light-matter systems. Here we report an unusual, ultrastrongly coupled matter-matter system of magnons that is analytically described by a unique Hamiltonian in which the relative importance of resonant and antiresonant interactions can be easily tuned and the latter can be made vastly dominant. We found a regime where vacuum Bloch-Siegert shifts, the hallmark of antiresonant interactions, greatly exceed analogous frequency shifts from resonant interactions. Further, we theoretically explored the system’s ground state and calculated up to 5.9 dB of quantum fluctuation suppression. These observations demonstrate that magnonic systems provide an ideal platform for exploring exotic quantum vacuum phenomena predicted in ultrastrongly coupled light-matter systems.