Repository logo
English
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of R-3
English
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Tsuno, Kyusei"

Now showing 1 - 5 of 5
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Carbon contents in reduced basalts at graphite saturation: Implications for the degassing of Mars, Mercury, and the Moon
    (Wiley, 2017) Li, Yuan; Dasgupta, Rajdeep; Tsuno, Kyusei
  • Loading...
    Thumbnail Image
    Item
    Delivery of carbon, nitrogen, and sulfur to the silicate Earth by a giant impact
    (AAAS, 2019) Grewal, Damanveer S.; Dasgupta, Rajdeep; Sun, Chenguang; Tsuno, Kyusei; Costin, Gelu
    Earth’s status as the only life-sustaining planet is a result of the timing and delivery mechanism of carbon (C), nitrogen (N), sulfur (S), and hydrogen (H). On the basis of their isotopic signatures, terrestrial volatiles are thought to have derived from carbonaceous chondrites, while the isotopic compositions of nonvolatile major and trace elements suggest that enstatite chondrite–like materials are the primary building blocks of Earth. However, the C/N ratio of the bulk silicate Earth (BSE) is superchondritic, which rules out volatile delivery by a chondritic late veneer. In addition, if delivered during the main phase of Earth’s accretion, then, owing to the greater siderophile (metal loving) nature of C relative to N, core formation should have left behind a subchondritic C/N ratio in the BSE. Here, we present high pressure-temperature experiments to constrain the fate of mixed C-N-S volatiles during core-mantle segregation in the planetary embryo magma oceans and show that C becomes much less siderophile in N-bearing and S-rich alloys, while the siderophile character of N remains largely unaffected in the presence of S. Using the new data and inverse Monte Carlo simulations, we show that the impact of a Mars-sized planet, having minimal contributions from carbonaceous chondrite-like material and coinciding with the Moon-forming event, can be the source of major volatiles in the BSE.
  • Loading...
    Thumbnail Image
    Item
    Flux of carbonate melt from deeply subducted pelitic sediments: Geophysical and geochemical implications for the source of Central American volcanic arc
    (American Geophysical Union, 2012) Tsuno, Kyusei; Dasgupta, Rajdeep; Danielson, Lisa; Righter, Kevin
    [1] We determined the fluid-present and fluid-absent near-solidus melting of an Al-poor carbonated pelite at 3–7 GPa, to constrain the possible influence of sediment melt in subduction zones. Hydrous silicate melt is produced at the solidi at 3–4 GPa whereas Na-K-rich carbonatite is produced at the solidi at ≥5 GPa for both starting compositions. At ≥5 GPa and 1050°C, immiscible carbonate and silicate melts appear with carbonate melt forming isolated pockets embedded in silicate melt. Application of our data to Nicaraguan slab suggests that sediment melting may not occur at sub-arc depth (∼170 km) but carbonatite production can occur atop slab or by diapiric rise of carbonated-silicate mélange zone to the mantle wedge at ∼200–250 km depth. Flux of carbonatite to shallower arc-source can explain the geochemistry of Nicaraguan primary magma (low SiO2and high CaO, Ba/La). Comparison of carbonate-silicate melt immiscibility field with mantle wedge thermal structure suggests that carbonatite might temporally be trapped in viscous silicate melt, and contribute to seismic low-velocity zone at deep mantle wedge of Nicaragua.
  • Loading...
    Thumbnail Image
    Item
    High Pressure Phase Relations of a Depleted Peridotite Fluxed by CO2‐H2O‐Bearing Siliceous Melts and the Origin of Mid‐Lithospheric Discontinuity
    (Wiley, 2018) Saha, Sriparna; Dasgupta, Rajdeep; Tsuno, Kyusei
    We present phase equilibria experiments on a depleted peridotite (Mg# 92) fluxed with variable proportions of a slab‐derived rhyolitic melt (with 9.4 wt.% H2O, 5 wt.% CO2), envisaging an interaction that could occur during formation of continents by imbrication of slabs/accretion of subarc mantles. Experiments were performed with 5 wt.% (Bulk 2) and 10 wt.% (Bulk 1) melt at 950–1175°C and 2–4 GPa using a piston‐cylinder and a multi‐anvil apparatus, to test the hypothesis that volatile‐bearing mineral‐phases produced during craton formation can cause reduction in aggregate shear‐wave velocities (VS) at mid‐lithospheric depths beneath continents. In addition to the presence of olivine, orthopyroxene, clinopyroxene, and garnet/spinel, phlogopite (Bulk 1: 3–7.6 wt.%; Bulk 2: 2.6–5 wt.%) at 2–4 GPa, and amphibole (Bulk 1: 3–9 wt.%; Bulk 2: 2–6 wt.%) at 2–3 GPa (≤1050°C) are also present. Magnesite (Bulk 1: ∼1 wt.% and Bulk 2: ∼0.6 wt.%) is present at 2–4 GPa (<1000°C at 3 and < 1050°C at 4 GPa) and its thermal breakdown coincides with the visual appearance of trace‐melt. However, an extremely small fraction of melt is inferred at all experiments based on the knowledge of fluid‐saturated peridotite solidus and the difference between bulk H2O and total H2O stored in the hydrous phases. Calculated mineral end‐member volume‐proportions were used to calculate VS of the resulting assemblage at experimental conditions and along representative continental geotherms (surface heat flow of 40–50 mWm−2). We note that reactive crystallization of phlogopite ± amphibole by infiltration of 3–10% slab‐derived hydrous‐silicic melt can cause up to 6% reduction in VS and that the estimated reduction in VS increases with increasing melt:rock ratio. The presence of phlogopite limits amphibole‐stability, making phlogopite a more likely candidate for MLDs at >100 km depth.
  • Loading...
    Thumbnail Image
    Item
    Simultaneous partitioning of silicon and oxygen into the Earth’s core during early Earth differentiation
    (2013-01-16) Tsuno, Kyusei; Frost, Daniel J.; Rubie, David C.; American Geophysical Union
    Silicon and oxygen are potential light elements in the Earth’s core and may be involved in metal-silicate reactions at the present day core-mantle boundary. We have performed multianvil experiments at 25 GPa and 2770–3080K to understand the simultaneous partitioning of these elements between liquid iron–rich metal and silicate melt. The presence of O in liquid Fe at high temperatures influences the partitioning of Si, causing more Si to partition into the metal than would be expected based on lower temperature measurements. Although Si and O are mutually exclusive in Fe metal at <3000 K, the level at which both element concentrations are similar in the liquid metal rises above 1 wt % at >3000 K. We have developed a thermodynamic model based on these experiments that accounts for the interaction between O and Si in the liquid metal. Comparison between this model and the previous results of diamond-anvil cell experiments up to 71 GPa indicates very little pressure dependence but a strong temperature dependence for O and Si partitioning. Our model predicts that subequal concentrations of Si and O, sufficient to explain the outer core density deficit, would have partitioned into core-forming metal if equilibration occurred between the metal and a magma ocean with a bulk silicate Earth composition at an average depth of ~1200km (~50GPa and ~3300K). An O- and Sienriched buoyant layer may have developed at the top of the outer core as a result of subsequent equilibration with the overlying mantle.
  • About R-3
  • Report a Digital Accessibility Issue
  • Request Accessible Formats
  • Fondren Library
  • Contact Us
  • FAQ
  • Privacy Notice
  • R-3 Policies

Physical Address:

6100 Main Street, Houston, Texas 77005

Mailing Address:

MS-44, P.O.BOX 1892, Houston, Texas 77251-1892