Browsing by Author "The CMS collaboration"
Now showing 1 - 20 of 83
Results Per Page
Sort Options
Item Analysis of the CP structure of the Yukawa coupling between the Higgs boson and τ leptons in proton-proton collisions at s√ = 13 TeV(Springer Nature, 2022) The CMS collaborationThe first measurement of the CP structure of the Yukawa coupling between the Higgs boson and τ leptons is presented. The measurement is based on data collected in proton-proton collisions at s√ = 13 TeV by the CMS detector at the LHC, corresponding to an integrated luminosity of 137 fb−1. The analysis uses the angular correlation between the decay planes of τ leptons produced in Higgs boson decays. The effective mixing angle between CP-even and CP-odd τ Yukawa couplings is found to be −1 ± 19°, compared to an expected value of 0 ± 21° at the 68.3% confidence level. The data disfavour the pure CP-odd scenario at 3.0 standard deviations. The results are compatible with predictions for the standard model Higgs boson.Item Angular analysis of the decay B+ → K∗(892)+μ+μ− in proton-proton collisions at s√= 8 TeV(Springer Nature, 2021) The CMS collaborationAngular distributions of the decay B+ → K∗(892)+μ+μ− are studied using events collected with the CMS detector in s√ = 8 TeV proton-proton collisions at the LHC, corresponding to an integrated luminosity of 20.0 fb−1. The forward-backward asymmetry of the muons and the longitudinal polarization of the K∗(892)+ meson are determined as a function of the square of the dimuon invariant mass. These are the first results from this exclusive decay mode and are in agreement with a standard model prediction.Item Azimuthal anisotropy of dijet events in PbPb collisions at $$ \sqrt{s_{\textrm{NN}}} $$= 5.02 TeV(Springer Nature, 2023) The CMS collaborationThe path-length dependent parton energy loss within the dense partonic medium created in lead-lead collisions at a nucleon-nucleon center-of-mass energy of = 5.02 TeV is studied by determining the azimuthal anisotropies for dijets with high transverse momentum. The data were collected by the CMS experiment in 2018 and correspond to an integrated luminosity of 1.69 nb−1. For events containing back-to-back jets, correlations in relative azimuthal angle and pseudorapidity (η) between jets and hadrons, and between two hadrons, are constructed. The anisotropies are expressed as the Fourier expansion coefficients vn, n = 2–4 of these azimuthal distributions. The dijet vn values are extracted from long-range (1.5 < |∆η| < 2.5) components of these correlations, which suppresses the background contributions from jet fragmentation processes. Positive dijet v2 values are observed which increase from central to more peripheral events, while the v3 and v4 values are consistent with zero within experimental uncertainties.Item Combination of CMS searches for heavy resonances decaying to pairs of bosons or leptons(Elsevier, 2019) The CMS collaborationA statistical combination of searches for heavy resonances decaying to pairs of bosons or leptons is presented. The data correspond to an integrated luminosity of 35.9 fb−1 collected during 2016 by the CMS experiment at the LHC in proton-proton collisions at a center-of-mass energy of 13 TeV. The data are found to be consistent with expectations from the standard model background. Exclusion limits are set in the context of models of spin-1 heavy vector triplets and of spin-2 bulk gravitons. For mass-degenerate W′ and Z′ resonances that predominantly couple to the standard model gauge bosons, the mass exclusion at 95% confidence level of heavy vector bosons is extended to 4.5 TeV as compared to 3.8 TeV determined from the best individual channel. This excluded mass increases to 5.0 TeV if the resonances couple predominantly to fermions.Item Combined searches for the production of supersymmetric top quark partners in proton–proton collisions at s√=13TeV(Springer Nature, 2021) The CMS collaborationA combination of searches for top squark pair production using proton–proton collision data at a center-of-mass energy of 13TeV at the CERN LHC, corresponding to an integrated luminosity of 137fb−1 collected by the CMS experiment, is presented. Signatures with at least 2 jets and large missing transverse momentum are categorized into events with 0, 1, or 2 leptons. New results for regions of parameter space where the kinematical properties of top squark pair production and top quark pair production are very similar are presented. Depending on the model, the combined result excludes a top squark mass up to 1325GeV for a massless neutralino, and a neutralino mass up to 700GeV for a top squark mass of 1150GeV. Top squarks with masses from 145 to 295GeV, for neutralino masses from 0 to 100GeV, with a mass difference between the top squark and the neutralino in a window of 30GeV around the mass of the top quark, are excluded for the first time with CMS data. The results of theses searches are also interpreted in an alternative signal model of dark matter production via a spin-0 mediator in association with a top quark pair. Upper limits are set on the cross section for mediator particle masses of up to 420GeV.Item Dependence of inclusive jet production on the anti-kT distance parameter in pp collisions at s= 13 TeV(Springer Nature, 2020) The CMS collaborationThe dependence of inclusive jet production in proton-proton collisions with a center-of-mass energy of 13 TeV on the distance parameter R of the anti-kT algorithm is studied using data corresponding to integrated luminosities up to 35.9 fb−1 collected by the CMS experiment in 2016. The ratios of the inclusive cross sections as functions of transverse momentum pT and rapidity y, for R in the range 0.1 to 1.2 to those using R = 0.4 are presented in the region 84 < pT < 1588 GeV and |y| < 2.0. The results are compared to calculations at leading and next-to-leading order in the strong coupling constant using different parton shower models. The variation of the ratio of cross sections with R is well described by calculations including a parton shower model, but not by a leading-order quantum chromodynamics calculation including nonperturbative effects. The agreement between the data and the theoretical predictions for the ratios of cross sections is significantly improved when next-to-leading order calculations with nonperturbative effects are used.Item Evidence for Higgs boson decay to a pair of muons(Springer Nature, 2021) The CMS collaborationEvidence for Higgs boson decay to a pair of muons is presented. This result combines searches in four exclusive categories targeting the production of the Higgs boson via gluon fusion, via vector boson fusion, in association with a vector boson, and in association with a top quark-antiquark pair. The analysis is performed using proton-proton collision data at s√ = 13 TeV, corresponding to an integrated luminosity of 137 fb−1, recorded by the CMS experiment at the CERN LHC. An excess of events over the back- ground expectation is observed in data with a significance of 3.0 standard deviations, where the expectation for the standard model (SM) Higgs boson with mass of 125.38 GeV is 2.5. The combination of this result with that from data recorded at s√ = 7 and 8 TeV, corresponding to integrated luminosities of 5.1 and 19.7 fb−1, respectively, increases both the expected and observed significances by 1%. The measured signal strength, relative to the SM prediction, is 1.19+0.40−0.39(stat)+0.15−0.14(syst). This result constitutes the first evidence for the decay of the Higgs boson to second generation fermions and is the most precise measurement of the Higgs boson coupling to muons reported to date.Item Evidence for Higgs boson decay to a pair of muons(Springer Nature, 2021) The CMS collaborationEvidence for Higgs boson decay to a pair of muons is presented. This result combines searches in four exclusive categories targeting the production of the Higgs boson via gluon fusion, via vector boson fusion, in association with a vector boson, and in association with a top quark-antiquark pair. The analysis is performed using proton-proton collision data at s√ = 13 TeV, corresponding to an integrated luminosity of 137 fb−1, recorded by the CMS experiment at the CERN LHC. An excess of events over the back- ground expectation is observed in data with a significance of 3.0 standard deviations, where the expectation for the standard model (SM) Higgs boson with mass of 125.38 GeV is 2.5. The combination of this result with that from data recorded at s√ = 7 and 8 TeV, corresponding to integrated luminosities of 5.1 and 19.7 fb−1, respectively, increases both the expected and observed significances by 1%. The measured signal strength, relative to the SM prediction, is 1.19+0.40−0.39(stat)+0.15−0.14(syst). This result constitutes the first evidence for the decay of the Higgs boson to second generation fermions and is the most precise measurement of the Higgs boson coupling to muons reported to date.Item Experimental study of different silicon sensor options for the upgrade of the CMS Outer Tracker(IOP, 2020) The CMS collaborationDuring the high-luminosity phase of the LHC (HL-LHC), planned to start in 2027, the accelerator is expected to deliver an instantaneous peak luminosity of up to 7.5×1034 cm−2 s−1. A total integrated luminosity of 0300 or even 0400 fb−1 is foreseen to be delivered to the general purpose detectors ATLAS and CMS over a decade, thereby increasing the discovery potential of the LHC experiments significantly. The CMS detector will undergo a major upgrade for the HL-LHC, with entirely new tracking detectors consisting of an Outer Tracker and Inner Tracker. However, the new tracking system will be exposed to a significantly higher radiation than the current tracker, requiring new radiation-hard sensors. CMS initiated an extensive irradiation and measurement campaign starting in 2009 to systematically compare the properties of different silicon materials and design choices for the Outer Tracker sensors. Several test structures and sensors were designed and implemented on 18 different combinations of wafer materials, thicknesses, and production technologies. The devices were electrically characterized before and after irradiation with neutrons, and with protons of different energies, with fluences corresponding to those expected at different radii of the CMS Outer Tracker after 0300 fb−1. The tests performed include studies with β sources, lasers, and beam scans. This paper compares the performance of different options for the HL-LHC silicon sensors with a focus on silicon bulk material and thickness.Item First measurement of large area jet transverse momentum spectra in heavy-ion collisions(Springer Nature, 2021) The CMS collaborationJet production in lead-lead (PbPb) and proton-proton (pp) collisions at a nucleon-nucleon center-of-mass energy of 5.02 TeV is studied with the CMS detector at the LHC, using PbPb and pp data samples corresponding to integrated luminosities of 404 μb−1 and 27.4 pb−1, respectively. Jets with different areas are reconstructed using the anti-kT algorithm by varying the distance parameter R. The measurements are performed using jets with transverse momenta (pT) greater than 200 GeV and in a pseudorapidity range of |η| < 2. To reveal the medium modification of the jet spectra in PbPb collisions, the properly normalized ratio of spectra from PbPb and pp data is used to extract jet nuclear modification factors as functions of the PbPb collision centrality, pT and, for the first time, as a function of R up to 1.0. For the most central collisions, a strong suppression is observed for high-pT jets reconstructed with all distance parameters, implying that a significant amount of jet energy is scattered to large angles. The dependence of jet suppression on R is expected to be sensitive to both the jet energy loss mechanism and the medium response, and so the data are compared to several modern event generators and analytic calculations. The models considered do not fully reproduce the data.Item First measurement of the cross section for top quark pair production with additional charm jets using dileptonic final states in pp collisions at s=13TeV(Elsevier, 2021) The CMS collaborationThe first measurement of the inclusive cross section for top quark pairs (tt‾) produced in association with two additional charm jets is presented. The analysis uses the dileptonic final states of tt‾ events produced in proton-proton collisions at a centre-of-mass energy of 13 TeV. The data correspond to an integrated luminosity of 41.5fb−1, recorded by the CMS experiment at the LHC. A new charm jet identification algorithm provides input to a neural network that is trained to distinguish among tt‾ events with two additional charm (tt‾cc‾), bottom (tt‾bb‾), and light-flavour or gluon (tt‾LL) jets. By means of a template fitting procedure, the inclusive tt‾cc‾, tt‾bb‾, and tt‾LL cross sections are simultaneously measured, together with their ratios to the inclusive tt‾ + two jets cross section. This provides measurements of the tt‾cc‾ and tt‾bb‾ cross sections of 10.1±1.2(stat)±1.4(syst)pb and 4.54±0.35(stat)±0.56(syst)pb, respectively, in the full phase space. The results are compared and found to be consistent with predictions from two different matrix element generators with next-to-leading order accuracy in quantum chromodynamics, interfaced with a parton shower simulation.Item Higher-order moments of the elliptic flow distribution in PbPb collisions at $$ \sqrt{s_{\textrm{NN}}} $$= 5.02 TeV(Springer Nature, 2024) The CMS collaborationThe hydrodynamic flow-like behavior of charged hadrons in high-energy lead-lead collisions is studied through multiparticle correlations. The elliptic anisotropy values based on different orders of multiparticle cumulants, v2{2k}, are measured up to the tenth order (k = 5) as functions of the collision centrality at a nucleon-nucleon center-of-mass energy of $$ \sqrt{s_{\textrm{NN}}} $$= 5.02 TeV. The data were recorded by the CMS experiment at the LHC and correspond to an integrated luminosity of 0.607 nb−1. A hierarchy is observed between the coefficients, with v2{2} > v2{4} ≳ v2{6} ≳ v2{8} ≳ v2{10}. Based on these results, centrality-dependent moments for the fluctuation-driven event-by-event v2 distribution are determined, including the skewness, kurtosis and, for the first time, superskewness. Assuming a hydrodynamic expansion of the produced medium, these moments directly probe the initial-state geometry in high-energy nucleus-nucleus collisions.Item Identification of hadronic tau lepton decays using a deep neural network(IOP Publishing, 2022) The CMS collaborationA new algorithm is presented to discriminate reconstructed hadronic decays of tau leptons (τh) that originate from genuine tau leptons in the CMS detector against τh candidates that originate from quark or gluon jets, electrons, or muons. The algorithm inputs information from all reconstructed particles in the vicinity of a τh candidate and employs a deep neural network with convolutional layers to efficiently process the inputs. This algorithm leads to a significantly improved performance compared with the previously used one. For example, the efficiency for a genuine τh to pass the discriminator against jets increases by 10–30% for a given efficiency for quark and gluon jets. Furthermore, a more efficient τh reconstruction is introduced that incorporates additional hadronic decay modes. The superior performance of the new algorithm to discriminate against jets, electrons, and muons and the improved τh reconstruction method are validated with LHC proton-proton collision data at √s = 13 TeV.Item Identification of heavy, energetic, hadronically decaying particles using machine-learning techniques(IOP, 2020) The CMS collaborationMachine-learning (ML) techniques are explored to identify and classify hadronic decays of highly Lorentz-boosted W/Z/Higgs bosons and top quarks. Techniques without ML have also been evaluated and are included for comparison. The identification performances of a variety of algorithms are characterized in simulated events and directly compared with data. The algorithms are validated using proton-proton collision data at √s = 13TeV, corresponding to an integrated luminosity of 35.9 fb−1. Systematic uncertainties are assessed by comparing the results obtained using simulation and collision data. The new techniques studied in this paper provide significant performance improvements over non-ML techniques, reducing the background rate by up to an order of magnitude at the same signal efficiency.Item Inclusive search for highly boosted Higgs bosons decaying to bottom quark-antiquark pairs in proton-proton collisions at s= 13 TeV(Springer Nature, 2020) The CMS collaborationA search for standard model Higgs bosons (H) produced with transverse momentum (pT) greater than 450 GeV and decaying to bottom quark-antiquark pairs (bb¯¯¯) is performed using proton-proton collision data collected by the CMS experiment at the LHC at s√ = 13 TeV. The data sample corresponds to an integrated luminosity of 137 fb−1. The search is inclusive in the Higgs boson production mode. Highly Lorentz-boosted Higgs bosons decaying to bb¯¯¯ are reconstructed as single large-radius jets, and are identified using jet substructure and a dedicated b tagging technique based on a deep neural network. The method is validated with Z → bb¯¯¯ decays. For a Higgs boson mass of 125 GeV, an excess of events above the background assuming no Higgs boson production is observed with a local significance of 2.5 standard deviations (σ), while the expectation is 0.7. The corresponding signal strength and local significance with respect to the standard model expectation are μH = 3.7 ± 1.2(stat)+0.8−0.7(syst)+0.8−0.5(theo) and 1.9 σ. Additionally, an unfolded differential cross section as a function of Higgs boson pT for the gluon fusion production mode is presented, assuming the other production modes occur at the expected rates.Item Measurement of b jet shapes in proton-proton collisions at s√= 5.02 TeV(Springer Nature, 2021) The CMS collaborationWe present the first study of charged-hadron production associated with jets originating from b quarks in proton-proton collisions at a center-of-mass energy of 5.02 TeV. The data sample used in this study was collected with the CMS detector at the CERN LHC and corresponds to an integrated luminosity of 27.4 pb−1. To characterize the jet substructure, the differential jet shapes, defined as the normalized transverse momentum distribution of charged hadrons as a function of angular distance from the jet axis, are measured for b jets. In addition to the jet shapes, the per-jet yields of charged particles associated with b jets are also quantified, again as a function of the angular distance with respect to the jet axis. Extracted jet shape and particle yield distributions for b jets are compared with results for inclusive jets, as well as with the predictions from the pythia and herwig++ event generators.Item Measurement of differential cross sections for Z bosons produced in association with charm jets in pp collisions at s√= 13 TeV(Springer Nature, 2021) The CMS collaborationMeasurements are presented of differential cross sections for the production of Z bosons in association with at least one jet initiated by a charm quark in pp collisions at s√ = 13 TeV. The data recorded by the CMS experiment at the LHC correspond to an integrated luminosity of 35.9 fb−1. The final states contain a pair of electrons or muons that are the decay products of a Z boson, and a jet consistent with being initiated by a charm quark produced in the hard interaction. Differential cross sections as a function of the transverse momentum pT of the Z boson and pT of the charm jet are compared with predictions from Monte Carlo event generators. The inclusive production cross section 405.4 ± 5.6 (stat) ± 24.3 (exp) ± 3.7 (theo) pb, is measured in a fiducial region requiring both leptons to have pseudorapidity |η| < 2.4 and pT > 10 GeV, at least one lepton with pT > 26 GeV, and a mass of the pair in the range 71–111 GeV, while the charm jet is required to have pT > 30 GeV and |η| < 2.4. These are the first measurements of these cross sections in proton-proton collisions at 13 TeV.Item Measurement of double-parton scattering in inclusive production of four jets with low transverse momentum in proton-proton collisions at s√ = 13 TeV(Springer Nature, 2022) The CMS collaborationA measurement of inclusive four-jet production in proton-proton collisions at a center-of-mass energy of 13 TeV is presented. The transverse momenta of jets within |η| < 4.7 are required to exceed 35, 30, 25, and 20 GeV for the first-, second-, third-, and fourth-leading jet, respectively. Differential cross sections are measured as functions of the jet transverse momentum, jet pseudorapidity, and several other observables that describe the angular correlations between the jets. The measured distributions show sensitivity to different aspects of the underlying event, parton shower modeling, and matrix element calculations. In particular, the interplay between angular correlations caused by parton shower and double-parton scattering contributions is shown to be important. The double-parton scattering contribution is extracted by means of a template fit to the data, using distributions for single-parton scattering obtained from Monte Carlo event generators and a double-parton scattering distribution constructed from inclusive single-jet events in data. The effective double-parton scattering cross section is calculated and discussed in view of previous measurements and of its dependence on the models used to describe the single- parton scattering background.Item Measurement of prompt open-charm production cross sections in proton-proton collisions at s√= 13 TeV(Springer Nature, 2021) The CMS collaborationThe production cross sections for prompt open-charm mesons in proton-proton collisions at a center-of-mass energy of 13 TeV are reported. The measurement is performed using a data sample collected by the CMS experiment corresponding to an integrated luminosity of 29 nb−1. The differential production cross sections of the D∗±, D±, and D0 $$ \left({\overline{\mathrm{D}}}^0\right) $$mesons are presented in ranges of transverse momentum and pseudorapidity 4 < pT < 100 GeV and |η| < 2.1, respectively. The results are compared to several theoretical calculations and to previous measurements.Item Measurement of quark- and gluon-like jet fractions using jet charge in PbPb and pp collisions at 5.02 TeV(Springer Nature, 2020) The CMS collaborationThe momentum-weighted sum of the electric charges of particles inside a jet, known as jet charge, is sensitive to the electric charge of the particle initiating the parton shower. This paper presents jet charge distributions in sNN√ = 5.02 TeV lead-lead (PbPb) and proton-proton (pp) collisions recorded with the CMS detector at the LHC. These data correspond to integrated luminosities of 404 μb−1 and 27.4 pb−1 for PbPb and pp collisions, respectively. Leveraging the sensitivity of the jet charge to fundamental differences in the electric charges of quarks and gluons, the jet charge distributions from simulated events are used as templates to extract the quark- and gluon-like jet fractions from data. The modification of these jet fractions is examined by comparing pp and PbPb data as a function of the overlap of the colliding Pb nuclei (centrality). This measurement tests the color charge dependence of jet energy loss due to interactions with the quark-gluon plasma. No significant modification between different centrality classes and with respect to pp results is observed in the extracted quark- and gluon-like jet fractions.