Repository logo
English
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of R-3
English
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Tan, Jun"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Convergence Analysis of Discontinuous Galerkin Methods for Poroelasticity Equations
    (2013-09-23) Tan, Jun; Riviere, Beatrice M.; Heinkenschloss, Matthias; Symes, William W.
    This thesis analyzes a numerical method for solving the poroelasticity equations. The model incorporating the poroelasticity equations in this thesis can be applied in intestinal edema, which is a medical condition referring to the accumulation of excess fluid in the spaces between cells of intestinal wall tissue. The model has a dilatation term and can give a comprehensive prediction of pressure and displacement for intestinal edema. I approximate the pressure, displacement and dilatation by the discontinuous Galerkin method, which includes symmetric, nonsymmetric and incomplete interior penalty Galerkin cases. Moreover, in order to solve for the nonsymmetric case, I introduce an additional penalty term in the scheme. Theoretical convergence error estimates derived in a discrete-in-time setting show the a priori error can be bounded by some constant, which is related to the pressure, displacement, dilatation and the mesh size.
  • About R-3
  • Report a Digital Accessibility Issue
  • Request Accessible Formats
  • Fondren Library
  • Contact Us
  • FAQ
  • Privacy Notice
  • R-3 Policies

Physical Address:

6100 Main Street, Houston, Texas 77005

Mailing Address:

MS-44, P.O.BOX 1892, Houston, Texas 77251-1892