Browsing by Author "Tainer, John A."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item A collagen glucosyltransferase drives lung adenocarcinoma progression in mice(Springer Nature, 2021) Guo, Hou-Fu; Bota-Rabassedas, Neus; Terajima, Masahiko; Leticia Rodriguez, B.; Gibbons, Don L.; Chen, Yulong; Banerjee, Priyam; Tsai, Chi-Lin; Tan, Xiaochao; Liu, Xin; Yu, Jiang; Tokmina-Roszyk, Michal; Stawikowska, Roma; Fields, Gregg B.; Miller, Mitchell D.; Wang, Xiaoyan; Lee, Juhoon; Dalby, Kevin N.; Creighton, Chad J.; Phillips, George N.Jr.; Tainer, John A.; Yamauchi, Mitsuo; Kurie, Jonathan M.Cancer cells are a major source of enzymes that modify collagen to create a stiff, fibrotic tumor stroma. High collagen lysyl hydroxylase 2 (LH2) expression promotes metastasis and is correlated with shorter survival in lung adenocarcinoma (LUAD) and other tumor types. LH2 hydroxylates lysine (Lys) residues on fibrillar collagen’s amino- and carboxy-terminal telopeptides to create stable collagen cross-links. Here, we show that electrostatic interactions between the LH domain active site and collagen determine the unique telopeptidyl lysyl hydroxylase (tLH) activity of LH2. However, CRISPR/Cas-9-mediated inactivation of tLH activity does not fully recapitulate the inhibitory effect of LH2 knock out on LUAD growth and metastasis in mice, suggesting that LH2 drives LUAD progression, in part, through a tLH-independent mechanism. Protein homology modeling and biochemical studies identify an LH2 isoform (LH2b) that has previously undetected collagen galactosylhydroxylysyl glucosyltransferase (GGT) activity determined by a loop that enhances UDP-glucose-binding in the GLT active site and is encoded by alternatively spliced exon 13 A. CRISPR/Cas-9-mediated deletion of exon 13 A sharply reduces the growth and metastasis of LH2b-expressing LUADs in mice. These findings identify a previously unrecognized collagen GGT activity that drives LUAD progression.Item Pro-metastatic collagen lysyl hydroxylase dimer assemblies stabilized by Fe2+-binding(Springer Nature, 2018) Guo, Hou-Fu; Tsai, Chi-Lin; Terajima, Masahiko; Tan, Xiaochao; Banerjee, Priyam; Miller, Mitchell D.; Liu, Xin; Yu, Jiang; Byemerwa, Jovita; Alvarado, Sarah K.; Kaoud, Tamer S.; Dalby, Kevin N.; Bota-Rabassedas, Neus; Chen, Yulong; Yamauchi, Mitsuo; Tainer, John A.; Phillips, George N.Jr.; Kurie, Jonathan M.Collagen lysyl hydroxylases (LH1-3) are Fe2+- and 2-oxoglutarate (2-OG)-dependent oxygenases that maintain extracellular matrix homeostasis. High LH2 levels cause stable collagen cross-link accumulations that promote fibrosis and cancer progression. However, developing LH antagonists will require structural insights. Here, we report a 2 Å crystal structure and X-ray scattering on dimer assemblies for the LH domain of L230 in Acanthamoeba polyphaga mimivirus. Loop residues in the double-stranded β-helix core generate a tail-to-tail dimer. A stabilizing hydrophobic leucine locks into an aromatic tyrosine-pocket on the opposite subunit. An active site triad coordinates Fe2+. The two active sites flank a deep surface cleft that suggest dimerization creates a collagen-binding site. Loss of Fe2+-binding disrupts the dimer. Dimer disruption and charge reversal in the cleft increase Km and reduce LH activity. Ectopic L230 expression in tumors promotes collagen cross-linking and metastasis. These insights suggest inhibitor targets for fibrosis and cancer.