Repository logo
English
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of R-3
English
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Tabata, Yasuhiko"

Now showing 1 - 6 of 6
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Data describing the swelling behavior and cytocompatibility of biodegradable polyelectrolyte hydrogels incorporating poly(L-lysine) for applications in cartilage tissue engineering
    (Elsevier, 2016) Lam, Johnny; Clark, Elisa C.; Fong, Eliza L.S.; Lee, Esther J.; Lu, Steven; Tabata, Yasuhiko; Mikos, Antonios G.; Bioengineering
    This data article presents data associated with the research article entitled "Evaluation of cell-laden polyelectrolyte hydrogels incorporating poly(L-lysine) for applications in cartilage tissue engineering" (Lam et al., 2016) [1]. Synthetic hydrogel composites fabricated using oligo(poly(ethylene glycol) fumarate) (OPF) macromers were utilized as vehicles for the incorporation of poly(L-lysine) (PLL) as well as the encapsulation of mesenchymal stem cells (MSCs). PLL-laden and PLL-free hydrogels were fabricated to characterize the main and interaction effects of OPF molecular weight, PLL molecular weight, and PLL loading density on the swelling and degradation of synthetic OPF hydrogels. Cells were then encapsulated within such hydrogels for in vitro culture and examined for viability, biochemical activity, and chondrogenic gene expression. These data, which are supplementary to the associated research article (Lam et al., 2016) [1], are presented here.
  • Loading...
    Thumbnail Image
    Item
    Dual growth factor delivery from bilayered, biodegradable hydrogel composites for spatially-guided osteochondral tissue repair
    (Elsevier, 2014) Lu, Steven; Lam, Johnny; Trachtenberg, Jordan E.; Lee, Esther J.; Seyednejad, Hajar; van den Beucken, Jeroen J.J.P.; Tabata, Yasuhiko; Wong, Mark E.; Jansen, John A.; Mikos, Antonios G.; Kasper, F. Kurtis; Bioengineering
    The present work investigated the use of biodegradable hydrogel composite scaffolds, based on the macromer oligo(poly(ethylene glycol) fumarate) (OPF), to deliver growth factors for the repair of osteochondral tissue in a rabbit model. In particular, bilayered OPF composites were used to mimic the structural layers of the osteochondral unit, and insulin-like growth factor-1 (IGF-1) and bone morphogenetic protein-2 (BMP-2) were loaded into gelatin microparticles and embedded within the OPF hydrogel matrix in a spatially controlled manner. Three different scaffold formulations were implanted in a medial femoral condyle osteochondral defect: 1) IGF-1 in the chondral layer, 2) BMP-2 in the subchondral layer, and 3) IGF-1 and BMP-2 in their respective separate layers. The quantity and quality of osteochondral repair was evaluated at 6 and 12 weeks with histological scoring and micro-computed tomography (micro-CT). While histological scoring results at 6 weeks showed no differences between experimental groups, micro-CT analysis revealed that the delivery of BMP-2 alone increased the number of bony trabecular islets formed, an indication of early bone formation, over that of IGF-1 delivery alone. At 12 weeks post-implantation, minimal differences were detected between the three groups for cartilage repair. However, the dual delivery of IGF-1 and BMP-2 had a higher proportion of subchondral bone repair, greater bone growth at the defect margins, and lower bone specific surface than the single delivery of IGF-1. These results suggest that the delivery of BMP-2 enhances subchondral bone formation and that, while the dual delivery of IGF-1 and BMP-2 in separate layers does not improve cartilage repair under the conditions studied, they may synergistically enhance the degree of subchondral bone formation. Overall, bilayered OPF hydrogel composites demonstrate potential as spatially-guided, multiple growth factor release vehicles for osteochondral tissue repair.
  • Loading...
    Thumbnail Image
    Item
    Effects of cellular parameters on the in vitro osteogenic potential of dual-gelling mesenchymal stem cell-laden hydrogels
    (Taylor & Francis, 2016) Vo, Tiffany N.; Tabata, Yasuhiko; Mikos, Antonios G.; Bioengineering; Chemical and Biomolecular Engineering
    This work investigated the effects of cellular encapsulation density and differentiation stage on the osteogenic capacity of injectable, dual physically and chemically gelling hydrogels comprised of thermogelling macromers and polyamidoamine crosslinkers. Undifferentiated and osteogenically predifferentiated mesenchymal stem cells (MSCs) were encapsulated within 20 wt% composite hydrogels with gelatin microparticles at densities of six or 15 million cells/mL. We hypothesized that a high encapsulation density and predifferentiation would promote increased cellular interaction and accelerate osteogenesis, leading to enhanced osteogenic potential in vitro. Hydrogels were able to maintain the viability of the encapsulated cells over a period of 28 days, with the high encapsulation density and predifferentiation group possessing the highest DNA content at all time points. Early alkaline phosphatase activity and mineralization were promoted by encapsulation density, whereas this effect by predifferentiation was only observed in the low seeding density groups. Both parameters only demonstrated short-lived effects when examined independently, but jointly led to greater levels of alkaline phosphatase activity and mineralization. The combined effects suggest that there may be optimal encapsulation densities and differentiation periods that need to be investigated to improve MSCs for biomaterial-based therapeutics in bone tissue engineering.
  • Loading...
    Thumbnail Image
    Item
    Evaluation of cell-laden polyelectrolyte hydrogels incorporating poly(l-Lysine) for applications in cartilage tissue engineering
    (Elsevier, 2016) Lam, Johnny; Clark, Elisa C.; Fong, Eliza L.S.; Lee, Esther J.; Lu, Steven; Tabata, Yasuhiko; Mikos, Antonios G.; Bioengineering
    To address the lack of reliable long-term solutions for cartilage injuries, strategies in tissue engineering are beginning to leverage developmental processes to spur tissue regeneration. This study focuses on the use of poly(l-lysine) (PLL), previously shown to up-regulate mesenchymal condensation during developmental skeletogenesis inᅠvitro, as an early chondrogenic stimulant of mesenchymal stem cells (MSCs). We characterized the effect of PLL incorporation on the swelling and degradation of oligo(poly(ethylene) glycol) fumarate) (OPF)-based hydrogels as functions of PLL molecular weight and dosage. Furthermore, we investigated the effect of PLL incorporation on the chondrogenic gene expression of hydrogel-encapsulated MSCs. The incorporation of PLL resulted in early enhancements of type II collagen and aggrecan gene expression and type II/type I collagen expression ratios when compared to blank controls. The presentation of PLL to MSCs encapsulated in OPF hydrogels also enhanced N-cadherin gene expression under certain culture conditions, suggesting that PLL may induce the expression of condensation markers in synthetic hydrogel systems. In summary, PLL can function as an inductive factor that primes the cellular microenvironment for early chondrogenic gene expression but may require additional biochemical factors for the generation of fully functional chondrocytes.
  • Loading...
    Thumbnail Image
    Item
    A factorial analysis of the combined effects of hydrogel fabrication parameters on the in vitro swelling and degradation of oligo(poly(ethylene glycol) fumarate) hydrogels
    (Wiley, 2014) Lam, Johnny; Kim, Kyobum; Lu, Steven; Tabata, Yasuhiko; Scott, David W.; Mikos, Antonios G.; Kasper, F. Kurtis; Bioengineering; Statistics
    In this study, a full factorial approach was used to investigate the effects of poly(ethylene glycol) (PEG) molecular weight (MW; 10,000 vs. 35,000 nominal MW), crosslinker-to-macromer carbon–carbon double bond ratio (DBR; 40 vs. 60), crosslinker type (PEG-diacrylate (PEGDA) vs. N,N′-methylene bisacrylamide (MB)), crosslinking extent of incorporated gelatin microparticles (low vs. high), and incubation medium composition (with or without collagenase) on the swelling and degradation characteristics of oligo[(poly(ethylene glycol) fumarate)] (OPF) hydrogel composites as indicated by the swelling ratio and the percentage of mass remaining, respectively. Each factor consisted of two levels, which were selected based on previous in vitro and in vivo studies utilizing these hydrogels for various tissue engineering applications. Fractional factorial analyses of the main effects indicated that the mean swelling ratio and the mean percentage of mass remaining of OPF composite hydrogels were significantly affected by every factor. In particular, increasing the PEG chain MW of OPF macromers significantly increased the mean swelling ratio and decreased the mean percentage of mass remaining by 5.7 ± 0.3 and 17.2 ± 0.6%, respectively. However, changing the crosslinker from MB to PEGDA reduced the mean swelling ratio and increased the mean percentage of mass remaining of OPF composite hydrogels by 4.9 ± 0.2 and 9.4 ± 0.9%, respectively. Additionally, it was found that the swelling characteristics of hydrogels fabricated with higher PEG chain MW or with MB were more sensitive to increases in DBR. Collectively, the main and cross effects observed between factors enables informed tuning of the swelling and degradation properties of OPF-based hydrogels for various tissue engineering applications.
  • Loading...
    Thumbnail Image
    Item
    Generation of osteochondral tissue constructs with chondrogenically and osteogenically predifferentiated mesenchymal stem cells encapsulated in bilayered hydrogels
    (Elsevier, 2014) Lam, Johnny; Lu, Steven; Meretoja, Ville V.; Tabata, Yasuhiko; Mikos, Antonios G.; Kasper, F. Kurtis; Bioengineering
    This study investigated the ability of chondrogenic and osteogenic predifferentiation of mesenchymal stem cells (MSCs) to play a role in the development of osteochondral tissue constructs using injectable bilayered oligo(poly(ethylene glycol) fumarate) (OPF) hydrogel composites. We hypothesized that the combinatorial approach of encapsulating cell populations of both chondrogenic and osteogenic lineages in a spatially controlled manner within bilayered constructs would enable these cells to maintain their respective phenotypes via the exchange of biochemical factors even without the influence of external growth factors. During monolayer expansion prior to hydrogel encapsulation, it was found that 7 (CG7) and 14 (CG14) days of MSC exposure to TGF-β3 allowed for the generation of distinct cell populations with corresponding chondrogenic maturities as indicated by increasing aggrecan and type II collagen/type I collagen expression. Chondrogenic and osteogenic cells were then encapsulated within their respective (chondral/subchondral) layers in bilayered hydrogel composites to include four experimental groups. Encapsulated CG7 cells within the chondral layer exhibited enhanced chondrogenic phenotype when compared to other cell populations based on stronger type II collagen and aggrecan gene expression and higher glycosaminoglycan-to-hydroxyproline ratios. Osteogenic cells that were co-cultured with chondrogenic cells (in the chondral layer) showed higher cellularity over time, suggesting that chondrogenic cells stimulated the proliferation of osteogenic cells. Groups with osteogenic cells displayed mineralization in the subchondral layer, confirming the effect of osteogenic predifferentiation. In summary, it was found that MSCs that underwent 7 days, but not 14 days, of chondrogenic predifferentiation most closely resembled the phenotype of native hyaline cartilage when combined with osteogenic cells in a bilayered OPF hydrogel composite, indicating that the duration of chondrogenic preconditioning is an important factor to control. Furthermore, the respective chondrogenic and osteogenic phenotypes were maintained for 28 days in vitro without the need for external growth factors, demonstrating the exciting potential of this novel strategy for the generation of osteochondral tissue constructs for cartilage engineering applications.
  • About R-3
  • Report a Digital Accessibility Issue
  • Request Accessible Formats
  • Fondren Library
  • Contact Us
  • FAQ
  • Privacy Notice
  • R-3 Policies

Physical Address:

6100 Main Street, Houston, Texas 77005

Mailing Address:

MS-44, P.O.BOX 1892, Houston, Texas 77251-1892