Browsing by Author "Swanglap, Pattanawit"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item In situ measurement of bovine serum albumin interaction with gold nanospheres(American Chemical Society, 2012) Dominguez-Medina, Sergio; McDonough, Steven; Swanglap, Pattanawit; Landes, Christy F.; Link, Stephan; Laboratory for NanophotonicsHere we present in situ observations of adsorption of bovine serum albumin (BSA) on citratestabilized gold nanospheres. We implemented scattering correlation spectroscopy as a tool to quantify changes in the nanoparticle Brownian motion resulting from BSA adsorption onto the nanoparticle surface. Protein binding was observed as an increase in the nanoparticle hydrodynamic radius. Our results indicate the formation of a protein monolayer at similar albumin concentrations as those found in human blood. Additionally, by monitoring the frequency and intensity of individual scattering events caused by single gold nanoparticles passing the observation volume, we found that BSA did not induce colloidal aggregation, a relevant result from the toxicological viewpoint. Moreover, to elucidate the thermodynamics of the gold nanoparticle-BSA association, we measured an adsorption isotherm which was best described by an anti-cooperative binding model. The number of binding sites based on this model was consistent with a BSA monolayer in its native state. In contrast, experiments using poly-ethylene glycol capped gold nanoparticles revealed no evidence for adsorption of BSA.Item Modal interference in spiky nanoshells(Optical Society of America, 2015) Hastings, Simon P.; Qian, Zhaoxia; Swanglap, Pattanawit; Fang, Ying; Engheta, Nader| Park, So-Jung; Link, Stephan; Fakhraai, ZahraNear-field enhancement of the electric field by metallic nanostructures is important in non-linear optical applications such as surface enhanced Raman scattering. One approach to producing strong localization of the electric field is to couple a dark, non-radiating plasmonic mode with a broad dipolar resonator that is detectable in the far-field. However, characterizing or predicting the degree of the coupling between these modes for a complicated nanostructure can be quite challenging. Here we develop a robust method to solve the T-matrix, the matrix that predicts the scattered electric fields of the incident light, based on finite-difference time-domain (FDTD) simulations and least square fitting algorithms. This method allows us to simultaneously calculate the T-matrix for a broad spectral range. Using this method, the coupling between the electric dipole and quadrupole modes of spiky nanoshells is evaluated. It is shown that the built-in disorder in the structure of these nanoshells allows for coupling between the dipole modes of various orientations as well as coupling between the dipole and the quadrupole modes. A coupling strength of about 5% between these modes can explain the apparent interference features observed in the single particle scattering spectrum. This effect is experimentally verified by single particle backscattering measurements of spiky nanoshells. The modal interference in disordered spiky nanoshells can explain the origin of the spectrally broad quadrupole resonances that result in strong Quadrupole Enhanced Raman Scattering (QERS) in these nanoparticles.Item Plasmonic Polymers Unraveled Through Single Particle Spectroscopy(Royal Society of Chemistry, 2014) Slaughter, Liane S.; Wang, Lin-Yung; Willingham, Britain A.; Olson, Jana M.; Swanglap, Pattanawit; Dominguez-Medina, Sergio; Link, Stephan; Laboratory for NanophotonicsPlasmonic polymers are quasi one-dimensional assemblies of nanoparticles whose optical responses are governed by near-field coupling of localized surface plasmons. Through single particle extinction spectroscopy correlated with electron microscopy, we reveal the effect of the composition of the repeat unit, the chain length, and extent of disorder on the energies, intensities, and line shapes of the collective resonances of individual plasmonic polymers constructed from three different sizes of gold nanoparticles. Our combined experiment and theoretical analysis focuses on the superradiant plasmon mode, which results from the most attractive interactions along the nanoparticle chain and yields the lowest energy resonance in the spectrum. This superradiant mode redshifts with increasing chain length until an infinite chain limit, where additional increases in chain length cause negligible change in the energy of the superradiant mode. We find that, among plasmonic polymers of equal width comprising nanoparticles with different sizes, the onset of the infinite chain limit and its associated energy are dictated by the number of repeat units and not the overall length, of the polymer. The intensities and linewidths of the superradiant mode relative to higher energy resonances, however, differ as the size and number of nanoparticles are varied in the plasmonic polymers studied here. These findings provide general guidelines for engineering the energies, intensities, and line shapes of the collective optical response of plasmonic polymers constructed from nanoparticles with sizes ranging from a few tens to one hundred nanometers.Item Single Particle Studies on the Influence of the Environment on the Plasmonic Properties of Single and Assembled Gold Nanoparticles of Various Shapes(2013-09-16) Swanglap, Pattanawit; Link, Stephan; Kolomeisky, Anatoly B.; Hafner, Jason H.Plasmonic nanoparticles and their assembly have the potential to serve as a platform in practical applications such as photonics, sensing, and nano-medicine. To use plasmonic nanoparticles in these applications, it is important to understand their optical properties and find methods to control their optical response. Using polarization-sensitive dark-field spectroscopy to study self-assembled nanoparticle rings on substrates with different permittivities I show that the interaction between collective plasmon resonances and the substrate can control the spatial scattering image. Using liquid crystals as an active medium that can be controlled with an external electric field I show that the Fano resonance of an asymmetric plasmonic assembly can be actively controlled utilizing the polarization change of scattered light passing through the liquid crystal device. Furthermore, utilizing the strong electromagnetic field enhancement of coupled plasmonic “nanospikes” on the surface of gold nanoshells with a silica core, I show the use of single spiky nanoshells as surface-enhanced Raman spectroscopy substrates. Individual spiky nanoshells give surprisingly reproducible surface-enhanced Raman spectroscopy intensities with a low standard deviation compared to clusters of nanoparticles. In summary, the work presented here provides understanding of the plasmonic response for assembled nanoparticles on different substrates, illustrated a new method to actively control the optical response of plasmonic nanoparticles, and characterizes spiky nanoshells as surface-enhanced Raman scattering platform.