Repository logo
English
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of R-3
English
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Sun, Xiaojuan"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    T Cell Repertoire Diversity Is Decreased in Type 1 Diabetes Patients
    (Elsevier, 2016) Tong, Yin; Li, Zhoufang; Zhang, Hua; Xia, Ligang; Zhang, Meng; Xu, Ying; Wang, Zhanhui; Deem, Michael W.; Sun, Xiaojuan; He, Jiankui; Bioengineering; Physics and Astronomy
    Type 1 diabetes mellitus (T1D) is an immune-mediated disease. The autoreactive T cells in T1D patients attack and destroy their own pancreatic cells. In order to systematically investigate the potential autoreactive T cell receptors (TCRs), we used a high-throughput immune repertoire sequencing technique to profile the spectrum of TCRs in individual T1D patients and controls. We sequenced the T cell repertoire of nine T1D patients, four type 2 diabetes (T2D) patients, and six nondiabetic controls. The diversity of the T cell repertoire in T1D patients was significantly decreased in comparison with T2D patients (P = 7.0E−08 for CD4+ T cells, P = 1.4E−04 for CD8+ T cells) and nondiabetic controls (P = 2.7E−09 for CD4+ T cells, P = 7.6E−06 for CD8+ T cells). Moreover, T1D patients had significantly more highly-expanded T cell clones than T2D patients (P = 5.2E−06 for CD4+ T cells, P = 1.9E−07 for CD8+ T cells) and nondiabetic controls (P = 1.7E−07 for CD4+ T cells, P = 3.3E−03 for CD8+ T cells). Furthermore, we identified a group of highly-expanded T cell receptor clones that are shared by more than two T1D patients. Although further validation in larger cohorts is needed, our data suggest that T cell receptor diversity measurements may become a valuable tool in investigating diabetes, such as using the diversity as an index to distinguish different types of diabetes.
  • About R-3
  • Report a Digital Accessibility Issue
  • Request Accessible Formats
  • Fondren Library
  • Contact Us
  • FAQ
  • Privacy Notice
  • R-3 Policies

Physical Address:

6100 Main Street, Houston, Texas 77005

Mailing Address:

MS-44, P.O.BOX 1892, Houston, Texas 77251-1892