Browsing by Author "Subramanian, Kaushik"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Kagome fiber based ultrafast laser microsurgery probe delivering micro-Joule pulse energies(The Optical Society, 2016) Subramanian, Kaushik; Gabay, Ilan; Ferhanoğlu, Onur; Shadfan, Adam; Pawlowski, Michal; Wang, Ye; Tkaczyk, Tomasz; Ben-Yakar, AdelaWe present the development of a 5 mm, piezo-actuated, ultrafast laser scalpel for fast tissue microsurgery. Delivery of micro-Joules level energies to the tissue was made possible by a large, 31 μm, air-cored inhibited-coupling Kagome fiber. We overcome the fiber’s low NA by using lenses made of high refractive index ZnS, which produced an optimal focusing condition with 0.23 NA objective. The optical design achieved a focused laser spot size of 4.5 μm diameter covering a 75 × 75 μm2 scan area in a miniaturized setting. The probe could deliver the maximum available laser power, achieving an average fluence of 7.8 J/cm2 on the tissue surface at 62% transmission efficiency. Such fluences could produce uninterrupted, 40 μm deep cuts at translational speeds of up to 5 mm/s along the tissue. We predicted that the best combination of speed and coverage exists at 8 mm/s for our conditions. The onset of nonlinear absorption in ZnS, however, limited the probe’s energy delivery capabilities to 1.4 μJ for linear operation at 1.5 picosecond pulse-widths of our fiber laser. Alternatives like broadband CaF2 crystals should mitigate such nonlinear limiting behavior. Improved opto-mechanical design and appropriate material selection should allow substantially higher fluence delivery and propel such Kagome fiber-based scalpels towards clinical translation.Item Ultrafast laser surgery probe with a calcium fluoride miniaturized objective for bone ablation(Optical Society of Americ, 2021) Subramanian, Kaushik; Subramanian, Kaushik; Andrus, Liam; Andrus, Liam; Pawlowski, Michal; Wang, Ye; Tkaczyk, Tomasz; Ben-Yakar, Adela; Ben-Yakar, Adela; Ben-Yakar, AdelaWe present a miniaturized ultrafast laser surgery probe with improved miniaturized optics to deliver higher peak powers and enable higher surgical speeds than previously possible. A custom-built miniaturized CaF2 objective showed no evidence of the strong multiphoton absorption observed in our previous ZnS-based probe, enabling higher laser power delivery to the tissue surface for ablation. A Kagome fiber delivered ultrashort pulses from a high repetition rate fiber laser to the objective, producing a focal beam radius of 1.96 μm and covering a 90×90 μm2 scan area. The probe delivered the maximum available fiber laser power, providing fluences >6 J/cm2 at the tissue surface at 53% transmission efficiency. We characterized the probe’s performance through a parametric ablation study on bovine cortical bone and defined optimal operating parameters for surgery using an experimental- and simulation-based approach. The entire opto-mechanical system, enclosed within a 5-mm diameter housing with a 2.6-mm diameter probe tip, achieved material removal rates >0.1 mm3/min, however removal rates were ultimately limited by the available laser power. Towards a next generation surgery probe, we simulated maximum material removal rates when using a higher power fiber laser and found that removal rates >2 mm3/min could be attained through appropriate selection of laser surgery parameters. With future development, the device presented here can serve as a precise surgical tool with clinically viable speeds for delicate applications such as spinal decompression surgeries.