Browsing by Author "Spatafora-Salazar, Aldo"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Aligned colloidal clusters in an alternating rotating magnetic field elucidated by magnetic relaxation(National Academy of Sciences, 2024) Spatafora-Salazar, Aldo; Lobmeyer, Dana M.; Cunha, Lucas H. P.; Joshi, Kedar; Biswal, Sibani LisaPrecise control at the colloidal scale is one of the most promising bottom–up approaches to fabricating new materials and devices with tunable and precisely engineered properties. Magnetically driven colloidal assembly offers great versatility because of the ability to externally tune particle–particle interactions and to construct a host of particle arrangements. However, despite previous efforts to probe the parameter space, global orientational control in conjunction with two-dimensional microstructural control has remained out of reach. Furthermore, the magnetic relaxation time of superparamagnetic beads has been largely overlooked despite being a key feature of the magnetic response. Here, we take advantage of the magnetic relaxation time of superparamagnetic beads in an alternating rotating magnetic field and show how harnessing this feature facilitates the formation of oriented clusters. The orientation of these clusters can be controlled by field parameters. Using experiments, simulations, and theory, we probe a two-particle system (dimer) under this alternating rotating magnetic field and use its dynamics to provide insights into the collective response that forms clusters. We find that the type of field has significant implications for the dipolar interactions between the colloids because of the nonnegligible magnetic relaxation. Moreover, we find that the competing time scales of the magnetic relaxation and the alternating field generate an anisotropic interaction potential that drives cluster alignment. By exploiting the magnetic relaxation time of magnetic systems, we can tailor new types of interparticle interactions, thereby expanding the capabilities of colloidal assembly in engineering unique materials and devices.Item Coiling of semiflexible paramagnetic colloidal chains(Royal Society of Chemistry, 2023) Spatafora-Salazar, Aldo; Kuei, Steve; Cunha, Lucas H.P.; Biswal, Sibani LisaSemiflexible filaments deform into a variety of configurations that dictate different phenomena manifesting at low Reynolds number. Harnessing the elasticity of these filaments to perform transport-related processes at the microfluidic scale requires structures that can be directly manipulated to attain controllable geometric features during their deformation. The configuration of semiflexible chains assembled from paramagnetic colloids can be readily controlled upon the application of external time-varying magnetic fields. In circularly rotating magnetic fields, these chains undergo coiling dynamics in which their ends close into loops that wrap inward, analogous to the curling of long nylon filaments under shear. The coiling is promising for the precise loading and targeted transport of small materials, however effective implementation requires an understanding of the role that field parameters and chain properties play on the coiling features. Here, we investigate the formation of coils in semiflexible paramagnetic chains using numerical simulations. We demonstrate that the size and shape of the initial coils are governed by the Mason and elastoviscous numbers, related to the field parameters and the chain bending stiffness. The size of the initial coil follows a nonmonotonic behavior with Mason number from which two regions are identified: (1) an elasticity-dependent nonlinear regime in which the coil size decreases with increasing field strength and for which loop shape tends to be circular, and (2) an elasticity-independent linear regime where the size increases with field strength and the shape become more elliptical. From the time scales associated to these regimes, we identify distinct coiling mechanisms for each case that relate the coiling dynamics to two other configurational dynamics of paramagnetic chains: wagging and folding behaviors.