Browsing by Author "Smith, James A."
Now showing 1 - 7 of 7
Results Per Page
Sort Options
Item A community-based geological reconstruction of Antarctic Ice Sheet deglaciation since the Last Glacial Maximum(Elsevier, 2014) The RAISED Consortium; Bentley, Michael J.; Ó Cofaigh, Colm; Anderson, John B.; Conway, Howard; Davies, Bethan; Graham, Alastair G.C.; Hillenbrand, Claus-Dieter; Hodgson, Dominic A.; Jamieson, Stewart S.R.; Larter, Robert D.; Mackintosh, Andrew; Smith, James A.; Verleyen, Elie; Ackert, Robert P.; Bart, Philip J.; Berg, Sonja; Brunstein, Daniel; Canals, Miquel; Colhoun, Eric A.; Crosta, Xavier; Dickens, William A.; Domack, Eugene; Dowdeswell, Julian A.; Dunbar, Robert; Ehrmann, Werner; Evans, Jeffrey; Favier, Vincent; Fink, David; Fogwill, Christopher J.; Glasser, Neil F.; Gohl, Karsten; Golledge, Nicholas R.; Goodwin, Ian; Gore, Damian B.; Greenwood, Sarah L.; Hall, Brenda L.; Hall, Kevin; Hedding, David W.; Hein, Andrew S.; Hocking, Emma P.; Jakobsson, Martin; Johnson, Joanne S.; Jomelli, Vincent; Jones, R. Selwyn; Klages, Johann P.; Kristoffersen, Yngve; Kuhn, Gerhard; Leventer, Amy; Licht, Kathy; Lilly, Katherine; Lindow, Julia; Livingstone, Stephen J.; Massé, Guillaume; McGlone, Matt S.; McKay, Robert M.; Melles, Martin; Miura, Hideki; Mulvaney, Robert; Nel, Werner; Nitsche, Frank O.; O'Brien, Philip E.; Post, Alexandra L.; Roberts, Stephen J.; Saunders, Krystyna M.; Selkirk, Patricia M.; Simms, Alexander R.; Spiegel, Cornelia; Stolldorf, Travis D.; Sugden, David E.; van der Putten, Nathalie; van Ommen, Tas; Verfaillie, Deborah; Vyverman, Wim; Wagner, Bernd; White, Duanne A.; Witus, Alexandra E.; Zwartz, DanA robust understanding of Antarctic Ice Sheet deglacial history since the Last Glacial Maximum is important in order to constrain ice sheet and glacial-isostatic adjustment models, and to explore the forcing mechanisms responsible for ice sheet retreat. Such understanding can be derived from a broad range of geological and glaciological datasets and recent decades have seen an upsurge in such data gathering around the continent and Sub-Antarctic islands. Here, we report a new synthesis of those datasets, based on an accompanying series of reviews of the geological data, organised by sector. We present a series of timeslice maps for 20 ka, 15 ka, 10 ka and 5 ka, including grounding line position and ice sheet thickness changes, along with a clear assessment of levels of confidence. The reconstruction shows that the Antarctic Ice sheet did not everywhere reach the continental shelf edge at its maximum, that initial retreat was asynchronous, and that the spatial pattern of deglaciation was highly variable, particularly on the inner shelf. The deglacial reconstruction is consistent with a moderate overall excess ice volume and with a relatively small Antarctic contribution to meltwater pulse 1a. We discuss key areas of uncertainty both around the continent and by time interval, and we highlight potential priorities for future work. The synthesis is intended to be a resource for the modelling and glacial geological community.Item Insights into glacial processes from micromorphology of silt-sized sediment(Copernicus Publications, 2024) Lepp, Allison P.; Miller, Lauren E.; Anderson, John B.; O'Regan, Matt; Winsborrow, Monica C. M.; Smith, James A.; Hillenbrand, Claus-Dieter; Wellner, Julia S.; Prothro, Lindsay O.; Podolskiy, Evgeny A.Silt-rich meltwater plume deposits (MPDs) analyzed from marine sediment cores have elucidated relationships that are clearly connected, yet difficult to constrain, between subglacial hydrology, ice-marginal landforms, and grounding-zone retreat patterns for several glacial catchments. Few attempts have been made to infer details of subglacial hydrology, such as flow regime, geometry of drainage pathways, and mode(s) of sediment transport through time, from grain-scale characteristics of MPDs. Using sediment samples from MPD, till, and grounding-zone proximal diamicton collected offshore of six modern and relict glacial catchments in both hemispheres, we examine grain shape distributions and microtextures (collectively, grain micromorphology) of the silt fraction to explore whether grains are measurably altered from their subglacial sources via meltwater action. We find that 75 % of all imaged grains (n = 9400) can be described by 25 % of the full range of measured shape morphometrics, indicating grain shape homogenization through widespread and efficient abrasive processes in subglacial environments. Although silt grains from MPDs exhibit edge rounding more often than silt grains from tills, grain surface textures indicative of fluvial transport (e.g., v-shaped percussions) occur in only a modest number of grains. Furthermore, MPD grain surfaces retain several textures consistent with transport beneath glacial ice (e.g., straight or arcuate steps, (sub)linear fractures) in comparable abundances to till grains. Significant grain shape alteration in MPDs compared to their till sources is observed in sediments from glacial regions where (1) high-magnitude, potentially catastrophic meltwater drainage events are inferred from marine sediment records and (2) submarine landforms suggest supraglacial melt contributed to the subglacial hydrological budget. This implies that quantifiable grain shape alteration in MPDs could reflect a combination of high-energy flow of subglacial meltwater, persistent sediment entrainment, and/or long sediment transport distances through subglacial drainage pathways. Integrating grain micromorphology into analysis of MPDs in site-specific studies could therefore aid in distinguishing periods of persistent, well-connected subglacial discharge from periods of sluggish or disorganized drainage. In the wider context of deglacial marine sedimentary and bathymetric records, a grain micromorphological approach may bolster our ability to characterize ice response to subglacial meltwater transmission through time. This work additionally demonstrates that glacial and fluvial surface textures are retained on silt-sized quartz grains in adequate amounts for microtexture analysis, which has heretofore been conducted exclusively on the sand fraction. Therefore, grain microtextures can be examined on silt-rich glaciogenic deposits that contain little to no sand as a means to evaluate sediment transport processes.Item Rapid retreat of Thwaites Glacier in the pre-satellite era(Springer Nature, 2022) Graham, Alastair G.C.; Wåhlin, Anna; Hogan, Kelly A.; Nitsche, Frank O.; Heywood, Karen J.; Totten, Rebecca L.; Smith, James A.; Hillenbrand, Claus-Dieter; Simkins, Lauren M.; Anderson, John B.; Wellner, Julia S.; Larter, Robert D.Understanding the recent history of Thwaites Glacier, and the processes controlling its ongoing retreat, is key to projecting Antarctic contributions to future sea-level rise. Of particular concern is how the glacier grounding zone might evolve over coming decades where it is stabilized by sea-floor bathymetric highs. Here we use geophysical data from an autonomous underwater vehicle deployed at the Thwaites Glacier ice front, to document the ocean-floor imprint of past retreat from a sea-bed promontory. We show patterns of back-stepping sedimentary ridges formed daily by a mechanism of tidal lifting and settling at the grounding line at a time when Thwaites Glacier was more advanced than it is today. Over a duration of 5.5 months, Thwaites grounding zone retreated at a rate of >2.1 km per year—twice the rate observed by satellite at the fastest retreating part of the grounding zone between 2011 and 2019. Our results suggest that sustained pulses of rapid retreat have occurred at Thwaites Glacier in the past two centuries. Similar rapid retreat pulses are likely to occur in the near future when the grounding zone migrates back off stabilizing high points on the sea floor.Item Reconstruction of changes in the Amundsen Sea and Bellingshausen Sea sector of the West Antarctic Ice Sheet since the Last Glacial Maximum(Elsevier, 2014) Larter, Robert D.; Anderson, John B.; Graham, Alastair G.C.; Gohl, Karsten; Hillenbrand, Claus-Dieter; Jakobsson, Martin; Johnson, Joanne S.; Kuhn, Gerhard; Nitsche, Frank O.; Smith, James A.; Witus, Alexandra E.; Bentley, Michael J.; Dowdeswell, JulianMarine and terrestrial geological and marine geophysical data that constrain deglaciation since the Last Glacial Maximum (LGM) of the sector of the West Antarctic Ice Sheet (WAIS) draining into the Amundsen Sea and Bellingshausen Sea have been collated and used as the basis for a set of time-slice reconstructions. The drainage basins in these sectors constitute a little more than one-quarter of the area of the WAIS, but account for about one-third of its surface accumulation. Their mass balance is becoming increasingly negative, and therefore they account for an even larger fraction of current WAIS discharge. If all of the ice in these sectors of the WAIS were discharged to the ocean, global sea level would rise by ca 2 m. There is compelling evidence that grounding lines of palaeo-ice streams were at, or close to, the continental shelf edge along the Amundsen Sea and Bellingshausen Sea margins during the last glacial period. However, the few cosmogenic surface exposure ages and ice core data available from the interior of West Antarctica indicate that ice surface elevations there have changed little since the LGM. In the few areas from which cosmogenic surface exposure ages have been determined near the margin of the ice sheet, they generally suggest that there has been a gradual decrease in ice surface elevation since pre-Holocene times. Radiocarbon dates from glacimarine and the earliest seasonally open marine sediments in continental shelf cores that have been interpreted as providing approximate ages for post-LGM grounding-line retreat indicate different trajectories of palaeo-ice stream recession in the Amundsen Sea and Bellingshausen Sea embayments. The areas were probably subject to similar oceanic, atmospheric and eustatic forcing, in which case the differences are probably largely a consequence of how topographic and geological factors have affected ice flow, and of topographic influences on snow accumulation and warm water inflow across the continental shelf. Pauses in ice retreat are recorded where there are “bottle necks” in cross-shelf troughs in both embayments. The highest retreat rates presently constrained by radiocarbon dates from sediment cores are found where the grounding line retreated across deep basins on the inner shelf in the Amundsen Sea, which is consistent with the marine ice sheet instability hypothesis. Deglacial ages from the Amundsen Sea Embayment (ASE) and Eltanin Bay (southern Bellingshausen Sea) indicate that the ice sheet had already retreated close to its modern limits by early Holocene time, which suggests that the rapid ice thinning, flow acceleration, and grounding line retreat observed in this sector over recent decades are unusual in the context of the past 10,000 years.Item Reconstruction of changes in the Weddell Sea sector of the Antarctic Ice Sheet since the Last Glacial Maximum(Elsevier, 2014) Hillenbrand, Claus-Dieter; Bentley, Michael J.; Stolldorf, Travis D.; Hein, Andrew S.; Kuhn, Gerhard; Graham, Alastair G.C.; Fogwill, Christopher J.; Kristoffersen, Yngve; Smith, James A.; Anderson, John B.; Larter, Robert D.; Melles, Martin; Hodgson, DomThe Weddell Sea sector is one of the main formation sites for Antarctic Bottom Water and an outlet for about one fifth of Antarctica's continental ice volume. Over the last few decades, studies on glacial–geological records in this sector have provided conflicting reconstructions of changes in ice-sheet extent and ice-sheet thickness since the Last Glacial Maximum (LGM at ca 23–19 calibrated kiloyears before present, cal ka BP). Terrestrial geomorphological records and exposure ages obtained from rocks in the hinterland of the Weddell Sea, ice-sheet thickness constraints from ice cores and some radiocarbon dates on offshore sediments were interpreted to indicate no significant ice thickening and locally restricted grounding-line advance at the LGM. Other marine geological and geophysical studies concluded that subglacial bedforms mapped on the Weddell Sea continental shelf, subglacial deposits and sediments over-compacted by overriding ice recovered in cores, and the few available radiocarbon ages from marine sediments are consistent with major ice-sheet advance at the LGM. Reflecting the geological interpretations, different ice-sheet models have reconstructed conflicting LGM ice-sheet configurations for the Weddell Sea sector. Consequently, the estimated contributions of ice-sheet build-up in the Weddell Sea sector to the LGM sea-level low-stand of ~130 m vary considerably. In this paper, we summarise and review the geological records of past ice-sheet margins and past ice-sheet elevations in the Weddell Sea sector. We compile marine and terrestrial chronological data constraining former ice-sheet size, thereby highlighting different levels of certainty, and present two alternative scenarios of the LGM ice-sheet configuration, including time-slice reconstructions for post-LGM grounding-line retreat. Moreover, we discuss consistencies and possible reasons for inconsistencies between the various reconstructions and propose objectives for future research. The aim of our study is to provide two alternative interpretations of glacial–geological datasets on Antarctic Ice-Sheet History for the Weddell Sea sector, which can be utilised to test and improve numerical ice-sheet models.Item Reconstruction of ice-sheet changes in the Antarctic Peninsula since the Last Glacial Maximum(Elsevier, 2014) Ó Cofaigh, Colm; Davies, Bethan J.; Livingstone, Stephen J.; Smith, James A.; Johnson, Joanne S.; Hocking, Emma P.; Hodgson, Dominic A.; Anderson, John B.; Bentley, Michael J.; Canals, Miquel; Domack, Eugene; Dowdeswell, Julian A.; Evans, Jeffrey; Glasser, Neil F.; Hillenbrand, Claus-Dieter; Larter, Robert D.; Roberts, Stephen J.; Simms, Alexander R.This paper compiles and reviews marine and terrestrial data constraining the dimensions and configuration of the Antarctic Peninsula Ice Sheet (APIS) from the Last Glacial Maximum (LGM) through deglaciation to the present day. These data are used to reconstruct grounding-line retreat in 5 ka time-steps from 25 ka BP to present. Glacial landforms and subglacial tills on the eastern and western Antarctic Peninsula (AP) shelf indicate that the APIS was grounded to the outer shelf/shelf edge at the LGM and contained a series of fast-flowing ice streams that drained along cross-shelf bathymetric troughs. The ice sheet was grounded at the shelf edge until ∼20 cal ka BP. Chronological control on retreat is provided by radiocarbon dates on glacimarine sediments from the shelf troughs and on lacustrine and terrestrial organic remains, as well as cosmogenic nuclide dates on erratics and ice moulded bedrock. Retreat in the east was underway by about 18 cal ka BP. The earliest dates on recession in the west are from Bransfield Basin where recession was underway by 17.5 cal ka BP. Ice streams were active during deglaciation at least until the ice sheet had pulled back to the mid-shelf. The timing of initial retreat decreased progressively southwards along the western AP shelf; the large ice stream in Marguerite Trough may have remained grounded at the shelf edge until about 14 cal ka BP, although terrestrial cosmogenic nuclide ages indicate that thinning had commenced by 18 ka BP. Between 15 and 10 cal ka BP the APIS underwent significant recession along the western AP margin, although retreat between individual troughs was asynchronous. Ice in Marguerite Trough may have still been grounded on the mid-shelf at 10 cal ka BP. In the Larsen-A region the transition from grounded to floating ice was established by 10.7–10.6 cal ka BP. The APIS had retreated towards its present configuration in the western AP by the mid-Holocene but on the eastern peninsula may have approached its present configuration several thousand years earlier, by the start of the Holocene. Mid to late-Holocene retreat was diachronous with stillstands, re-advances and changes in ice-shelf configuration being recorded in most places. Subglacial topography exerted a major control on grounding-line retreat with grounding-zone wedges, and thus by inference slow-downs or stillstands in the retreat of the grounding line, occurring in some cases on reverse bed slopes.Item Revealing the former bed of Thwaites Glacier using sea-floor bathymetry: implications for warm-water routing and bed controls on ice flow and buttressing(Copernicus Publications, 2020) Hogan, Kelly A.; Larter, Robert D.; Graham, Alastair G.C.; Arthern, Robert; Kirkham, James D.; Minzoni, Rebecca Totten; Jordan, Tom A.; Clark, Rachel; Fitzgerald, Victoria; Wåhlin, Anna K.; Anderson, John B.; Hillenbrand, Claus-Dieter; Nitsche, Frank O.; Simkins, Lauren; Smith, James A.; Gohl, Karsten; Arndt, Jan Erik; Hong, Jongkuk; Wellner, JuliaThe geometry of the sea floor immediately beyond Antarctica's marine-terminating glaciers is a fundamental control on warm-water routing, but it also describes former topographic pinning points that have been important for ice-shelf buttressing. Unfortunately, this information is often lacking due to the inaccessibility of these areas for survey, leading to modelled or interpolated bathymetries being used as boundary conditions in numerical modelling simulations. At Thwaites Glacier (TG) this critical data gap was addressed in 2019 during the first cruise of the International Thwaites Glacier Collaboration (ITGC) project. We present more than 2000 km2 of new multibeam echo-sounder (MBES) data acquired in exceptional sea-ice conditions immediately offshore TG, and we update existing bathymetric compilations. The cross-sectional areas of sea-floor troughs are under-predicted by up to 40 % or are not resolved at all where MBES data are missing, suggesting that calculations of trough capacity, and thus oceanic heat flux, may be significantly underestimated. Spatial variations in the morphology of topographic highs, known to be former pinning points for the floating ice shelf of TG, indicate differences in bed composition that are supported by landform evidence. We discuss links to ice dynamics for an overriding ice mass including a potential positive feedback mechanism where erosion of soft erodible highs may lead to ice-shelf ungrounding even with little or no ice thinning. Analyses of bed roughnesses and basal drag contributions show that the sea-floor bathymetry in front of TG is an analogue for extant bed areas. Ice flow over the sea-floor troughs and ridges would have been affected by similarly high basal drag to that acting at the grounding zone today. We conclude that more can certainly be gleaned from these 3D bathymetric datasets regarding the likely spatial variability of bed roughness and bed composition types underneath TG. This work also addresses the requirements of recent numerical ice-sheet and ocean modelling studies that have recognised the need for accurate and high-resolution bathymetry to determine warm-water routing to the grounding zone and, ultimately, for predicting glacier retreat behaviour.