Browsing by Author "Skoulatos, Markos"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Spin excitation anisotropy in the optimally isovalent-doped superconductor BaFe2(As0.7P0.3)2(American Physical Society, 2017) Hu, Ding; Zhang, Wenliang; Wei, Yuan; Roessli, Bertrand; Skoulatos, Markos; Regnault, Louis Pierre; Chen, Genfu; Song, Yu; Luo, Huiqian; Li, Shiliang; Dai, PengchengWe use neutron polarization analysis to study spin excitation anisotropy in the optimally isovalent-doped superconductor BaFe2(As0.7P0.3)2 (Tc=30 K). Different from optimally hole- and electron-doped BaFe2As2, where there is a clear spin excitation anisotropy in the paramagnetic tetragonal state well above Tc, we find no spin excitation anisotropy for energies above 2 meV in the normal state of BaFe2(As0.7P0.3)2. Upon entering the superconducting state, significant spin excitation anisotropy develops at the antiferromagnetic (AF) zone center QAF=(1,0,L=odd), while the magnetic spectrum is isotropic at the zone boundary Q=(1,0,L=even). By comparing the temperature, wave vector, and polarization dependence of the spin excitation anisotropy in BaFe2(As0.7P0.3)2 and hole-doped Ba0.67K0.33Fe2As2 (Tc=38 K), we conclude that such anisotropy arises from spin-orbit coupling and is associated with the nearby AF order and superconductivity.Item Structural and Magnetic Phase Transitions near Optimal Superconductivity in BaFe2(As1−xPx)2(American Physical Society, 2015) Hu, Ding; Lu, Xingye; Zhang, Wenliang; Luo, Huiqian; Li, Shiliang; Wang, Peipei; Chen, Genfu; Han, Fei; Banjara, Shree R.; Sapkota, A.; Kreyssig, A.; Goldman, A.I.; Yamani, Z.; Niedermayer, Christof; Skoulatos, Markos; Georgii, Robert; Keller, T.; Wang, Pengshuai; Yu, Weiqiang; Dai, PengchengWe use nuclear magnetic resonance (NMR), high-resolution x-ray, and neutron scattering studies to study structural and magnetic phase transitions in phosphorus-doped BaFe2(As1−xPx)2. Previous transport, NMR, specific heat, and magnetic penetration depth measurements have provided compelling evidence for the presence of a quantum critical point (QCP) near optimal superconductivity at x=0.3. However, we show that the tetragonal-to-orthorhombic structural (Ts) and paramagnetic to antiferromagnetic (AF, TN) transitions in BaFe2(As1−xPx)2 are always coupled and approach TN≈Ts≥Tc (≈29 K) for x=0.29 before vanishing abruptly for x≥0.3. These results suggest that AF order in BaFe2(As1−xPx)2 disappears in a weakly first-order fashion near optimal superconductivity, much like the electron-doped iron pnictides with an avoided QCP.