Repository logo
English
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of R-3
English
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Singh, Swatantra Pratap"

Now showing 1 - 4 of 4
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Antibiofilm and antimicrobial functional membrane spacer
    (2021-06-08) Arnusch, Christopher John; Singh, Swatantra Pratap; Sargunaraj, Franklin; Oren, Yoram; Tour, James Mitchell; Li, Yilun; Rice University; B.G. Negev Technologies and Applications Ltd., at Ben-Gurion University; United States Patent and Trademark Office
    Disclosed herein methods for combating biofouling in a liquid, e.g. an aqueous medium by providing a surface coated with at least one laser-induced graphene (LIG) layer in said liquid medium. Particularly disclosed herein method and devices for treating water comprising passing a water stream through a membrane module equipped with at least one spacer coated with at least one layer of LIG, and optionally by applying an electric potential to the at least one LIG layer to achieve a bactericidal effect in the water stream. Specifically, disclosed herein a polymeric mesh suitable for use as a spacer in a membrane module in water treatment application, said mesh being at least partially coated with LIG.
  • Loading...
    Thumbnail Image
    Item
    Laser-induced graphene sensors and methods of making and using same
    (2025-02-18) Tour, James Mitchell; Luong X, Duy; Yang, Kaichun; Arnusch, Christopher John; Singh, Swatantra Pratap; Thakur, Amit Kumar; Stanford, Michael G.; Li, John T.; Presutti, Steven E.; Rice University; B.G. NEGEV TECHNOLOGIES AND APPLICATIONS LTD., AT BEN-GURION UNIVERSITY; United States Patent and Trademark Office
    Gas sensors having laser-induced graphene (LIG) and/or LIG composites, and methods of making and using gas sensors having LIG and/or LIG composites.
  • Loading...
    Thumbnail Image
    Item
    Methods of fabricating laser-induced graphene and compositions thereof
    (2021-11-02) Tour, James M.; Chyan, Yieu; Arnusch, Christopher John; Singh, Swatantra Pratap; Li, Yilun; Luong X, Duy; Kittrell, Carter; Ye, Ruquan; Miller, Jordan; Kinstlinger, Ian; Cofer, Savannah; Rice University; Ben-Gurion University; United States Patent and Trademark Office
    Methods that expand the properties of laser-induced graphene (LIG) and the resulting LIG having the expanded properties. Methods of fabricating laser-induced graphene from materials, which range from natural, renewable precursors (such as cloth or paper) to high performance polymers (like Kevlar). With multiple lasing, however, highly conductive PEI-based LIG could be obtained using both multiple pass and defocus methods. The resulting laser-induced graphene can be used, inter alia, in electronic devices, as antifouling surfaces, in water treatment technology, in membranes, and in electronics on paper and food Such methods include fabrication of LIG in controlled atmospheres, such that, for example, superhydrophobic and superhydrophilic LIG surfaces can be obtained. Such methods further include fabricating laser-induced graphene by multiple lasing of carbon precursors. Such methods further include direct 3D printing of graphene materials from carbon precursors. Application of such LIG include oil/water separation, liquid or gas separations using polymer membranes, anti-icing, microsupercapacitors, supercapacitors, water splitting catalysts, sensors, and flexible electronics.
  • Loading...
    Thumbnail Image
    Item
    Methods of fabricating laser-induced graphene and compositions thereof
    (2024-06-18) Tour, James M.; Chyan, Yieu; Arnusch, Christopher John; Singh, Swatantra Pratap; Li, Yilun; Luong X, Duy; Kittrell, Carter; Ye, Ruquan; Miller, Jordan; Kinstlinger, Ian; Cofer, Savannah; Rice University; B.G. Negev Technologies and Applications Ltd. at Ben-Gurion University; United States Patent and Trademark Office
    Methods that expand the properties of laser-induced graphene (LIG) and the resulting LIG having the expanded properties. Methods of fabricating laser-induced graphene from materials, which range from natural, renewable precursors (such as cloth or paper) to high performance polymers (like Kevlar). With multiple lasing, however, highly conductive PEI-based LIG could be obtained using both multiple pass and defocus methods. The resulting laser-induced graphene can be used, inter alia, in electronic devices, as antifouling surfaces, in water treatment technology, in membranes, and in electronics on paper and food Such methods include fabrication of LIG in controlled atmospheres, such that, for example, superhydrophobic and superhydrophilic LIG surfaces can be obtained. Such methods further include fabricating laser-induced graphene by multiple lasing of carbon precursors. Such methods further include direct 3D printing of graphene materials from carbon precurors. Application of such LIG include oil/water separation, liquid or gas separations using polymer membranes, anti-icing, microsupercapacitors, supercapacitors, water splitting catalysts, sensors, and flexible electronics.
  • About R-3
  • Report a Digital Accessibility Issue
  • Request Accessible Formats
  • Fondren Library
  • Contact Us
  • FAQ
  • Privacy Notice
  • R-3 Policies

Physical Address:

6100 Main Street, Houston, Texas 77005

Mailing Address:

MS-44, P.O.BOX 1892, Houston, Texas 77251-1892