Repository logo
English
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of R-3
English
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Singh, Gurwinder"

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Functional wood for carbon dioxide capture
    (Cell Press, 2023) Roy, Soumyabrata; Philip, Firuz Alam; Oliveira, Eliezer Fernando; Singh, Gurwinder; Joseph, Stalin; Yadav, Ram Manohar; Adumbumkulath, Aparna; Hassan, Sakib; Khater, Ali; Wu, Xiaowei; Bollini, Praveen; Vinu, Ajayan; Shimizu, George; Ajayan, Pulickel M.; Kibria, Md Golam; Rahman, Muhammad M.
    With increasing global climate change, integrated concepts to innovate sustainable structures that can multiaxially address CO2 mitigation are crucial. Here, we fabricate a functional wood structure with enhanced mechanical performance via a top-down approach incorporating a high-performance metal-organic framework (MOF), Calgary framework 20 (CALF-20). The functional wood with 10% (w/w) CALF-20 can capture CO2 with an overall gravimetric capacity of 0.45 mmol/g at 1 bar and 303 K that scales linearly with the MOF loading. Interestingly, the functional wood surpasses the calculated normalized adsorption capacity of CALF-20 stemming from the mesoporous wood framework, pore geometry modulation in CALF-20, and favorable CO2 uptake interactions. Density functional theory (DFT) calculations elucidate strong interactions between CALF-20 and the cellulose backbone and an understanding of how such interactions can favorably modulate the pore geometry and CO2 physisorption energies. Thus, our work opens an avenue for developing sustainable composites that can be utilized in CO2 capture and structural applications.
  • Loading...
    Thumbnail Image
    Item
    The rise of borophene
    (Elsevier, 2024) Kumar, Prashant; Singh, Gurwinder; Bahadur, Rohan; Li, Zhixuan; Zhang, Xiangwei; Sathish, C. I.; Benzigar, Mercy R.; Kim Anh Tran, Thi; Padmanabhan, Nisha T.; Radhakrishnan, Sithara; Janardhanan, Jith C; Ann Biji, Christy; Jini Mathews, Ann; John, Honey; Tavakkoli, Ehsan; Murugavel, Ramaswamy; Roy, Soumyabrata; Ajayan, Pulickel M.; Vinu, Ajayan
    Borophene stands out uniquely among Xenes with its metallic character, Dirac nature, exceptional electron mobility, thermal conductivity, and Young’s moduli—surpassing graphene. Invented in 2015, various methods, including atomic layer deposition, molecular beam epitaxy, and chemical vapor deposition, have successfully been demonstrated to realize substrate-supported crystal growth. Top-down approaches like micromechanical, sonochemical, solvothermal and modified hummer’s techniques have also been employed. Thanks to its high electronic mobility, borophene serves as an active material for ultrafast sensing of light, gases, molecules, and strain. Its metallic behaviour, electrochemical activity, and anti-corrosive nature make it ideal for applications in energy storage and catalysis. It has been proven effective as an electrocatalyst for HER, OER, water splitting, CO2 reduction, and NH3 reduction reactions. Beyond this, borophene has found utility in bioimaging, biosensing, and various biomedical applications. A special emphasis will be given on the borophene nanoarchitectonics i.e. doped borophene and borophene-based hybrids with other 2D materials and nanoparticles and the theoretical understanding of these emerging materials systems to gain more insights on their electronic structure and properties, aiming to manipulate borophene for tailored applications.
  • About R-3
  • Report a Digital Accessibility Issue
  • Request Accessible Formats
  • Fondren Library
  • Contact Us
  • FAQ
  • Privacy Notice
  • R-3 Policies

Physical Address:

6100 Main Street, Houston, Texas 77005

Mailing Address:

MS-44, P.O.BOX 1892, Houston, Texas 77251-1892