Repository logo
English
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of R-3
English
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Simpson, Jeffrey R."

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Asymmetric excitation profiles in the resonance Raman response of armchair carbon nanotubes
    (American Physical Society, 2015) Hároz, Erik H.; Duque, Juan G.; Barros, Eduardo B.; Telg, Hagen; Simpson, Jeffrey R.; Walker, Angela R. Hight; Khripin, Constantine Y.; Fagan, Jeffrey A.; Tu, Xiaomin; Zheng, Ming; Kono, Junichiro; Doorn, Stephen K.
    We performed tunable resonance Raman spectroscopy on samples highly enriched in the (5,5), (6,6), (7,7), and (8,8) armchair structures of metallic single-wall carbon nanotubes. We present Raman excitation profiles (REPs) for both the radial breathing mode and G-band phonons of these species. G-band excitation profiles are shown to resolve the expected incoming and outgoing resonances of the scattering process. Notably, the profiles are highly asymmetric, with the higher-energy outgoing resonance weaker than the incoming resonance. These results are comparable to the asymmetric excitation profiles observed previously in semiconducting nanotubes, introduce a different electronic type, and broaden the structural range over which the asymmetry is found to exist. Modeling of the behavior with a third-order quantum model that accounts for the k dependence in energies and matrix elements, without including excitonic effects, is found to be insufficient for reproducing the observed asymmetry. We introduce an alternative fifth-order model in which the REP asymmetry arises from quantum interference introduced by phonon-mediated state mixing between the EM11 and K-momentum excitons. Such state mixing effectively introduces a nuclear coordinate dependence in the transition dipole moment and thus may be viewed as a non-Condon effect from a molecular perspective. This result unifies a molecularlike picture of nanotube transitions (introduced by their excitonic nature) with a condensed matter approach for describing their behavior.
  • About R-3
  • Report a Digital Accessibility Issue
  • Request Accessible Formats
  • Fondren Library
  • Contact Us
  • FAQ
  • Privacy Notice
  • R-3 Policies

Physical Address:

6100 Main Street, Houston, Texas 77005

Mailing Address:

MS-44, P.O.BOX 1892, Houston, Texas 77251-1892