Repository logo
English
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of R-3
English
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Shaver, Jonah"

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    High field magneto-optical spectroscopy of semiconducting single-walled carbon nanotubes
    (2008) Shaver, Jonah; Kono, Junichiro
    Single-walled carbon nanotubes (SWNTs) present an ideal system for study of one dimensional physics. Classically speaking, their long persistence lengths, i.e. the length over which they do not bend, result in rigid-rod-like behavior in the solution-phase. Quantum mechanically speaking, extreme confinement in the radial direction result in interesting properties for optically excited correlated electron-hole pairs, or excitons. In addition, their hollow crystalline structure presents a controllable way to modify the circumferential boundary conditions on their electronic wavefunctions resulting in changes to the electronic band structure via threading a magnetic field through the diameter. An applied magnetic field also aligns SWNTs due to their magnetic susceptibility anisotropy. We have measured the dynamic alignment properties of single-walled carbon nanotube (SWNT) suspensions in pulsed high magnetic fields through linear dichroism spectroscopy. Millisecond-duration pulsed high magnetic fields up to 55 T as well as microsecond-duration pulsed ultrahigh magnetic fields up to 166 T were used. Due to their anisotropic magnetic properties, SWNTs align in an applied magnetic field, and due to their anisotropic optical properties, aligned SWNTs show linear dichroism. The characteristics of their overall alignment depend on several factors, including the viscosity and temperature of the suspending solvent, the degree of anisotropy of nanotube magnetic susceptibilities, the nanotube length distribution, the degree of nanotube bundling, and the strength and duration of the applied magnetic field. In order to explain our data, we have developed a theoretical model based on the time-dependent Smoluchowski equation for rigid rods that accurately reproduces the salient features of the experimental data. We have also investigated excitons in SWNTs in stretch aligned polyacrylic acid films, direction of stretch ( nˆ ), through optical spectroscopy at low temperature (1.5 K) and high magnetic fields ( B ) up to 55 T. The application of a magnetic field along the SWNT axis drastically increases the measured photoluminescence, by as much as a factor of 6, at low temperatures. To explain this we have developed a theoretical model based on field-dependent exciton band structure and the interplay of Coulomb interactions and the Aharonov-Bohm effect. This conclusively explains our data as the first experimental observation of dark excitons 5-10 meV below the bright excitons. In addition, utilizing two well-defined measurement geometries, nˆ
  • Loading...
    Thumbnail Image
    Item
    Ozonation of carbon nanotubes in fluorocarbons
    (2008-12-30) Ziegler, Kirk J.; Shaver, Jonah; Hauge, Robert H.; Marek, Irene Morin; Rice University; United States Patent and Trademark Office
    The present invention is generally directed to methods of ozonating CNTs in fluorinated solvents (fluoro-solvents), wherein such methods provide a less dangerous alternative to existing ozonolysis methods. In some embodiments, such methods comprise the steps of: (a) dispersing carbon nanotubes in a fluoro-solvent to form a dispersion; and (b) reacting ozone with the carbon nanotubes in the dispersion to functionalize the sidewalls of the carbon nanotubes and yield functionalized carbon nanotubes with oxygen-containing functional moieties. In some such embodiments, the fluoro-solvent is a fluorocarbon solvent, such as a perfluorinated polyether.
  • About R-3
  • Report a Digital Accessibility Issue
  • Request Accessible Formats
  • Fondren Library
  • Contact Us
  • FAQ
  • Privacy Notice
  • R-3 Policies

Physical Address:

6100 Main Street, Houston, Texas 77005

Mailing Address:

MS-44, P.O.BOX 1892, Houston, Texas 77251-1892