Repository logo
English
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of R-3
English
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Sevilla, Martin"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Estimation of Gaussian Graphical Models Using Learned Graph Priors
    (2024-08-06) Sevilla, Martin; Segarra, Santiago
    We propose a novel algorithm for estimating Gaussian graphical models incorporating prior information about the underlying graph. Classical approaches generally propose optimization problems with sparsity penalties as prior information. While efficient, these approaches do not allow using involved prior distributions and force us to incorporate the prior information on the precision matrix rather than on its support. In this work, we investigate how to estimate the graph of a Gaussian graphical model by introducing any prior distribution directly on the graph structure. We use graph neural networks to learn the score function of any graph prior and then leverage Langevin diffusion to generate samples from the posterior distribution. We study the estimation of both partially known and entirely unknown graphical models and prove that our proposed estimator is consistent in both scenarios. Finally, numerical experiments using synthetic and real-world graphs demonstrate the benefits of our approach.
  • About R-3
  • Report a Digital Accessibility Issue
  • Request Accessible Formats
  • Fondren Library
  • Contact Us
  • FAQ
  • Privacy Notice
  • R-3 Policies

Physical Address:

6100 Main Street, Houston, Texas 77005

Mailing Address:

MS-44, P.O.BOX 1892, Houston, Texas 77251-1892