Repository logo
English
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of R-3
English
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Seger, Sarah"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Lower Order Solvability, Seifert Forms, and Blanchfield Forms of Links
    (2019-04-18) Seger, Sarah; Harvey, Shelly
    We define and study specific generalizations of Seifert forms and Blanchfield forms to links and study their relationships with lower order solvability and with each other. We define Seifert Z-surfaces for links with pairwise linking numbers zero and prove that if a link is 0.5-solvable then every Seifert Z-surface has a metabolizer. We use this result to determine that Arf invariants and Milnor's invariants are not sufficient to classify 0.5-solvable links. We define nonsingular localized Blanchfield forms for links with pairwise linking numbers zero and build on work of Cochran-Orr-Teichner and Cochran-Harvey-Leidy to show that 1-solvability implies each of these Blanchfield forms are hyperbolic. We also define Blanchfield forms on the infinite cyclic covers of the exterior of a link with pairwise linking numbers zero and build on work of Friedl-Powell to prove that in a special case, a Seifert Z-surface having a metabolizer implies the Blanchfield form is hyperbolic. There are well known definitions of boundary Seifert surfaces and multivariable Blanchfield forms for boundary links. We define a boundary metabolizer for a boundary Seifert surface, which is more restrictive than the usual definition of a metabolizer, and prove that the existence of a boundary metabolizer implies both 0.5-solvability and that the multivariable Blanchfield form is hyperbolic.
  • About R-3
  • Report a Digital Accessibility Issue
  • Request Accessible Formats
  • Fondren Library
  • Contact Us
  • FAQ
  • Privacy Notice
  • R-3 Policies

Physical Address:

6100 Main Street, Houston, Texas 77005

Mailing Address:

MS-44, P.O.BOX 1892, Houston, Texas 77251-1892