Browsing by Author "Scuseria, Gustavo E"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Combination of Wavefunction and Density Functional Approximations for Describing Electronic Correlation(2016-06-02) Garza Gonzalez, Alejandro Jesus; Scuseria, Gustavo EPerhaps the most important approximations to the electronic structure problem in quantum chemistry are those based on coupled cluster and density functional theories. Coupled cluster theory has been called the ``gold standard'' of quantum chemistry due to the high accuracy that it achieves for weakly correlated systems. Kohn--Sham density functionals based on semilocal approximations are, without a doubt, the most widely used methods in chemistry and material science because of their high accuracy/cost ratio. The root of the success of coupled cluster and density functionals is their ability to efficiently describe the dynamic part of the electron correlation. However, both traditional coupled cluster and density functional approximations may fail catastrophically when substantial static correlation is present. This severely limits the applicability of these methods to a plethora of important chemical and physical problems such as, e.g., the description of bond breaking, transition states, transition metal-, lanthanide- and actinide-containing compounds, and superconductivity. In an attempt to tackle this problem, nonstandard (single-reference) coupled cluster-based techniques that aim to describe static correlation have been recently developed: pair coupled cluster doubles (pCCD) and singlet-paired coupled cluster doubles (CCD0). The ability to describe static correlation in pCCD and CCD0 comes, however, at the expense of important amounts of dynamic correlation so that the high accuracy of standard coupled cluster becomes unattainable. Thus, the reliable and efficient description of static and dynamic correlation in a simultaneous manner remains an open problem for quantum chemistry and many-body theory in general. In this thesis, different ways to combine pCCD and CCD0 with density functionals in order to describe static and dynamic correlation simultaneously (and efficiently) are explored. The combination of wavefunction and density functional methods has a long history in quantum chemistry (practical implementations have appeared in the literature since the 1970s). However, this kind of techniques have not achieved widespread use due to problems such as double counting of correlation and the symmetry dilemma---the fact that wavefunction methods respect the symmetries of Hamiltonian, while modern functionals are designed to work with broken symmetry densities. Here, particular mathematical features of pCCD and CCD0 are exploited to avoid these problems in an efficient manner. The two resulting families of approximations, denoted as pCCD+DFT and CCD0+DFT, are shown to be able to describe static and dynamic correlation in standard benchmark calculations. Furthermore, it is also shown that CCD0+DFT lends itself to combination with correlation from the direct random phase approximation (dRPA). Inclusion of dRPA in the long-range via the technique of range-separation allows for the description of dispersion correlation, the remaining part of the correlation. Thus, when combined with the dRPA, CCD0+DFT can account for all three-types of electron correlation that are necessary to accurately describe molecular systems. Lastly, applications of CCD0+DFT to actinide chemistry are considered in this work. The accuracy of CCD0+DFT for predicting equilibrium geometries and vibrational frequencies of actinide molecules and ions is assessed and compared to that of well-established quantum chemical methods. For this purpose, the $f^0$ actinyl series (UO$_2^{2+}$, NpO$_ 2^{3+}$, PuO$_2^{4+}$), the isoelectronic NUN, and Thorium (ThO, ThO$^{2+}$) and Nobelium (NoO, NoO$_2$) oxides are studied. It is shown that the CCD0+DFT description of these species agrees with available experimental data and is comparable with the results given by the highest-level calculations that are possible for such heavy compounds while being, at least, an order of magnitude lower in computational cost.Item Unconventional Coupled Cluster Theory: Single-Reference Methods for Multi-Reference Problems(2019-04-15) Gomez, John A; Scuseria, Gustavo EOur overarching goal is the development of wavefunction-based quantum chemistry methods that give good results for both weakly- and strongly-correlated systems, that preserve as many fundamental properties of the exact wavefunction as possible, and that are computationally affordable and black-box for the end user. Many of our contributions in this area are based on the archetypal quantum chemistry method, coupled-cluster theory, and they have resulted from our efforts to understand and remedy the failure of symmetry-adapted coupled-cluster theory in the presence of strong correlation. In this thesis, we recount these investigations and discuss the key insights and results that they have produced. We describe in detail the novel wavefunction approaches we have devised, as well as the approximations and considerations one must make in order to arrive at useful equations. We believe that this work could be important for the continued development of affordable methods capable of accurately describing a wide variety of quantum chemical systems.