Browsing by Author "Schwartz, Jon A."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item A Detailed Clinical Case of Localized Prostate Tumors Treated with Nanoparticle-Assisted Sub-Ablative Laser Ablation(MDPI, 2024) Kadria-Vili, Yara; Schwartz, Jon A.; Polascik, Thomas J.; Goodrich, Glenn P.; Jorden, David; Pinder, Diane; Halas, Naomi J.; Rastinehad, Ardeshir R.; Laboratory for NanophotonicsAuroLase® Therapy—a nanoparticle-enabled focal therapy—has the potential to safely and effectively treat localized prostate cancer (PCa), preserving baseline functionality. This article presents a detailed case of localized PCa treated with AuroLase, providing insight on expectations from the diagnosis of PCa to one year post-treatment. AuroLase Therapy is a two-day treatment consisting of a systemic infusion of gold nanoshells (~150-nm hydrodynamic diameter) on Day 1, and sub-ablative laser treatment on Day 2. Multiparametric MRI (mpMRI) was used for tumor visualization, treatment planning, and therapy response assessment. The PCa was targeted with a MR/Ultrasound-fusion (MR/US) transperineal approach. Successful treatment was confirmed at 6 and 12 months post-treatment by the absence of disease in MR/US targeted biopsies. On the mpMRI, confined void space was evident, an indication of necrotic tissues encompassing the treated lesion, which was completely resolved at 12 months, forming a band-like scar with no evidence of recurrent tumor. The patient’s urinary and sexual functions were unchanged. During the one-year follow-up, changes on the DCE sequence and in the Ktrans and ADC values assist in qualitatively and quantitatively evaluating tissue changes. The results highlight the potential of gold-nanoparticle-enabled sub-ablative laser treatment to target and control localized PCa, maintain quality of life, and preserve baseline functionality.Item Gold nanoshell-localized photothermal ablation of prostate tumors in a clinical pilot device study(National Academy of Sciences, 2019) Rastinehad, Ardeshir R.; Anastos, Harry; Wajswol, Ethan; Winoker, Jared S.; Sfakianos, John P.; Doppalapudi, Sai K.; Carrick, Michael R.; Knauer, Cynthia J.; Taouli, Bachir; Lewis, Sara C.; Tewari, Ashutosh K.; Schwartz, Jon A.; Canfield, Steven E.; George, Arvin K.; West, Jennifer L.; Halas, Naomi J.Biocompatible gold nanoparticles designed to absorb light at wavelengths of high tissue transparency have been of particular interest for biomedical applications. The ability of such nanoparticles to convert absorbed near-infrared light to heat and induce highly localized hyperthermia has been shown to be highly effective for photothermal cancer therapy, resulting in cell death and tumor remission in a multitude of preclinical animal models. Here we report the initial results of a clinical trial in which laser-excited gold-silica nanoshells (GSNs) were used in combination with magnetic resonance–ultrasound fusion imaging to focally ablate low-intermediate-grade tumors within the prostate. The overall goal is to provide highly localized regional control of prostate cancer that also results in greatly reduced patient morbidity and improved functional outcomes. This pilot device study reports feasibility and safety data from 16 cases of patients diagnosed with low- or intermediate-risk localized prostate cancer. After GSN infusion and high-precision laser ablation, patients underwent multiparametric MRI of the prostate at 48 to 72 h, followed by postprocedure mpMRI/ultrasound targeted fusion biopsies at 3 and 12 mo, as well as a standard 12-core systematic biopsy at 12 mo. GSN-mediated focal laser ablation was successfully achieved in 94% (15/16) of patients, with no significant difference in International Prostate Symptom Score or Sexual Health Inventory for Men observed after treatment. This treatment protocol appears to be feasible and safe in men with low- or intermediate-risk localized prostate cancer without serious complications or deleterious changes in genitourinary function.