Repository logo
English
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of R-3
English
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Schaefer, Scott David"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    A factored, interpolatory subdivision scheme for surfaces of revolution
    (2003) Schaefer, Scott David; Warren, Joe
    We present a new non-stationary, interpolatory subdivision scheme capable of producing circles and surfaces of revolution and in the limit is C1. First, we factor the classical four point interpolatory scheme of Dyn et al. into linear subdivision plus differencing. We then extend this method onto surfaces by performing bilinear subdivision and a generalized differencing pass. This extension also provides the ability to interpolate curve networks. On open nets this simple, yet efficient, scheme reproduces the curve rule, which allows C0 creases by joining two patches together that share the same boundary. Our subdivision scheme also contains a tension parameter that changes with the level of subdivision and gives the scheme its non-stationary property. This tension is updated using a simple recurrence and, chosen correctly, can produce exact surfaces of revolution.
  • About R-3
  • Report a Digital Accessibility Issue
  • Request Accessible Formats
  • Fondren Library
  • Contact Us
  • FAQ
  • Privacy Notice
  • R-3 Policies

Physical Address:

6100 Main Street, Houston, Texas 77005

Mailing Address:

MS-44, P.O.BOX 1892, Houston, Texas 77251-1892