Browsing by Author "Scala, Clea"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Amino Acid Repeats Cause Extraordinary Coding Sequence Variation in the Social Amoeba Dictyostelium discoideum(Public Library of Science, 2012-09) Scala, Clea; Tian, Xiangjun; Mehdiabadi, Natasha J.; Smith, Margaret H.; Saxer, Gerda; Stephens, Katie; Buzombo, Prince; Strassmann, Joan E.; Queller, David C.Protein sequences are normally the most conserved elements of genomes owing to purifying selection to maintain their functions. We document an extraordinary amount of within-species protein sequence variation in the model eukaryote Dictyostelium discoideum stemming from triplet DNA repeats coding for long strings of single amino acids. D. discoideum has a very large number of such strings, many of which are polyglutamine repeats, the same sequence that causes various human neurological disorders in humans, like Huntington's disease. We show here that D. discoideum coding repeat loci are highly variable among individuals, making D. discoideum a candidate for the most variable proteome. The coding repeat loci are not significantly less variable than similar non-coding triplet repeats. This pattern is consistent with these amino-acid repeats being largely non-functional sequences evolving primarily by mutation and drift.Item Polymorphism of microsatellites in coding regions of Dictyostelium discoideum(2005) Scala, Clea; Queller, David C.; Strassmann, Joan E.Microsatellites are repetitive DNA sequences with high rate of slippage mutations, which cause changes in length. As expected by the neutral theory of molecular evolution the level of polymorphism of these sequences is high when located in non-coding regions that may experience little selection. We tested the hypothesis that triplet repeat microsatellites located in coding regions of the social amoeba Dictyostelium discoideum should have a low level of polymorphism, given the presumably stronger effect on fitness of changes in coding DNA. We analyzed the length of 8 microsatellites located in coding regions of Dictyostellium discoideum in 114 clones of the North America population, divided in 5 subpopulations. Our results showed that each of the eight loci was very highly variable in the population. The lowest range of length variation was 17 repeats (51 bp) for a microsatellite in the ATG1 gene and the maximum range was 78 repeats (234 bp) for a microsatellite in the dimA gene. We tested the possibility that the level of polymorphism was due to population structure. Although present, the population structure was low, and consequently not responsible for the high polymorphism.