Repository logo
English
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of R-3
English
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Saud Ul Hassan, Muhammad"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Modern deep neural networks for Direct Normal Irradiance forecasting: A classification approach
    (Elsevier, 2024) Saud Ul Hassan, Muhammad; Liaqat, Kashif; Schaefer, Laura; Zolan, Alexander J.; Mechanical Engineering
    The escalating energy demand and the adverse environmental impacts of fossil-fuel use necessitate a shift towards cleaner and renewable alternatives. Concentrated Solar Power (CSP) technology emerges as a promising solution, offering a carbon-free alternative for power generation. The efficiency and profitability of CSP depend on the Direct Normal Irradiance (DNI) component of solar radiation; hence, accurate DNI forecasting can help optimize CSP plants’ operations and performance. The unpredictable nature of weather phenomena, particularly cloud cover, introduces uncertainty into DNI projections. Existing DNI forecasting models use meteorological factors, which are both challenging to estimate numerically over short prediction windows and expensive to model through data at a sufficiently high spatial and temporal resolution. This research addresses the challenge by presenting a novel approach that formulates DNI prediction as a multi-class classification problem, departing from conventional regression-based methods. The primary objective of this classification framework is to identify optimal periods aligning with specific operational thresholds for CSP plants, contributing to enhanced dispatch optimization strategies. We model the DNI classification problem using four advanced deep neural networks – rectified linear unit (ReLU) networks, 1D residual networks (ResNets), bidirectional long short-term memory (BiLSTM) networks, and transformers – achieving accuracies up to 93.5% without requiring meteorological parameters.
  • About R-3
  • Report a Digital Accessibility Issue
  • Request Accessible Formats
  • Fondren Library
  • Contact Us
  • FAQ
  • Privacy Notice
  • R-3 Policies

Physical Address:

6100 Main Street, Houston, Texas 77005

Mailing Address:

MS-44, P.O.BOX 1892, Houston, Texas 77251-1892