Repository logo
English
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of R-3
English
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Santiago, J.M."

Now showing 1 - 3 of 3
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Band Jahn-Teller structural phase transition inᅠY2In
    (American Physical Society, 2018) Svanidze, E.; Georgen, C.; Hallas, A.M.; Huang, Q.; Santiago, J.M.; Lynn, J.W.; Morosan, E.
    The number of paramagnetic materials that undergo a structural phase transition is rather small, which can perhaps explain the limited understanding of the band Jahn-Teller mechanism responsible for this effect. Here we present a structural phase transition observed in paramagnetic Y2In at temperature T0=250±5 K. Below T0, the high-temperature hexagonal P63/mmc phase transforms into the low-temperature orthorhombic Pnma phase. This transition is accompanied by an unambiguous thermal hysteresis of about 10 K, observed in both magnetic susceptibility M/H(T) and resistivity ρ(T), indicating a first-order transition. Band structure calculations suggest a band Jahn-Teller mechanism, during which the degeneracy of electron bands close to the Fermi energy is broken. We establish that this structural phase transition does not have a magnetic component; however, the possibility of a charge density wave formation has not been eliminated.
  • Loading...
    Thumbnail Image
    Item
    Pressure effects in the itinerant antiferromagnetic metal TiAu
    (American Physical Society, 2017) Wolowiec, C.T.; Fang, Y.; McElroy, C.A.; Jeffries, J.R.; Stillwell, R.L.; Svanidze, E.; Santiago, J.M.; Morosan, E.; Weir, S.T.; Vohra, Y.K.; Maple, M.B.
    We report the pressure dependence of the Néel temperature T N up to P ≈ 27 GPa for the recently discovered itinerant antiferromagnet (IAFM) TiAu. The T N ( P ) phase boundary exhibits unconventional behavior in which the Néel temperature is enhanced from T N ≈ 33 K at ambient pressure to a maximum of T N ≈ 35 K occurring at P ≈ 5.5 GPa. Upon a further increase in pressure, T N is monotonically suppressed to ∼ 22 K at P ≈ 27 GPa. We also find a crossover in the temperature dependence of the electrical resistivity ρ in the antiferromagnetic (AFM) phase that is coincident with the peak in T N ( P ) , such that the temperature dependence of ρ = ρ 0 + A n T n changes from n ≈ 3 during the enhancement of T N to n ≈ 2 during the suppression of T N . Based on an extrapolation of the T N ( P ) data to a possible pressure-induced quantum critical point, we estimate the critical pressure to be P c ≈ 45 GPa.
  • Loading...
    Thumbnail Image
    Item
    Quantum critical point in the Sc-doped itinerant antiferromagnet TiAu
    (American Physical Society, 2017) Svanidze, E.; Besara, T.; Wang, J.K.; Geiger, D.; Prochaska, L.; Santiago, J.M.; Lynn, J.W.; Paschen, S.; Siegrist, T.; Morosan, E.
    We present an experimental realization of a quantum critical point in an itinerant antiferromagnet composed of nonmagnetic constituents, TiAu. By partially substituting Ti with Sc in Ti 1 − x Sc x Au , a doping amount of x c = 0.13 ± 0.01 induces a quantum critical point with minimal disorder effects. The accompanying non-Fermi liquid behavior is observed in both the resistivity ρ ∝ T and specific heat C p / T ∝ − ln T , characteristic of a two-dimensional antiferromagnet. The quantum critical point is accompanied by an enhancement of the spin fluctuations, as indicated by the diverging Sommerfeld coefficient γ at x = x c .
  • About R-3
  • Report a Digital Accessibility Issue
  • Request Accessible Formats
  • Fondren Library
  • Contact Us
  • FAQ
  • Privacy Notice
  • R-3 Policies

Physical Address:

6100 Main Street, Houston, Texas 77005

Mailing Address:

MS-44, P.O.BOX 1892, Houston, Texas 77251-1892