Repository logo
English
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of R-3
English
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Sankaranarayanan, Sriram"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Regular Real Analysis
    (Association for Computing Machinery, 2013) Chaudhuri, Swarat; Sankaranarayanan, Sriram; Vardi, Moshe Y.
    We initiate the study of regular real analysis, or the analysis of real functions that can be encoded by automata on infinite words. It is known that ω-automata can be used to represent {relations} between real vectors, reals being represented in exact precision as infinite streams. The regular functions studied here constitute the functional subset of such relations. We show that some classic questions in function analysis can become elegantly computable in the context of regular real analysis. Specifically, we present an automata-theoretic technique for reasoning about limit behaviors of regular functions, and obtain, using this method, a decision procedure to verify the continuity of a regular function. Several other decision procedures for regular functions-for finding roots, fix points, minima, etc.-are also presented. At the same time, we show that the class of regular functions is quite rich, and includes functions that are highly challenging to encode using traditional symbolic notation.
  • About R-3
  • Report a Digital Accessibility Issue
  • Request Accessible Formats
  • Fondren Library
  • Contact Us
  • FAQ
  • Privacy Notice
  • R-3 Policies

Physical Address:

6100 Main Street, Houston, Texas 77005

Mailing Address:

MS-44, P.O.BOX 1892, Houston, Texas 77251-1892