Repository logo
English
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of R-3
English
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Sanchez, Nancy P."

Now showing 1 - 12 of 12
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    A compact mid-infrared dual-gas CH4/C2H6 sensor using a single interband cascade laser and custom electronics
    (SPIE, 2017) Ye, Weilin; Zheng, Chuantao; Tittel, Frank K.; Sanchez, Nancy P.; Gluszek, Aleksander K.; Hudzikowski, Arkadiusz J.; Lou, Minhan; Dong, Lei; Griffin, Robert J.
    A compact mid-infrared (MIR) dual-gas sensor system was demonstrated for simultaneous detection of methane (CH4) and ethane (C2H6) using a single continuous-wave (CW) interband cascade laser (ICL) based on tunable laser absorption spectroscopy (TDLAS) and wavelength modulation spectroscopy (WMS). Ultracompact custom electronics were developed, including a laser current driver, a temperature controller and a lock-in amplifier. These custom electronics reduce the size and weight of the sensor system as compared with a previous version based on commercial electronics. A multipass gas cell with an effective optical length of 54.6 m was employed to enhance the absorption signal. A 3337 nm ICL was capable of targeting a C2H6 absorption line at 2996.88 cm-1 and a CH4 line at 2999.06 cm-1. Dual-gas detection was realized by scanning both the CH4 and C2H6 absorption lines. Based on an Allan deviation analysis, the 1 σ minimum detection limit (MDL) was 17.4 ppbv for CH4 and 2.4 ppbv for C2H6 with an integration time of 4.3 s. TDLAS based sensor measurements for both indoor and outdoor mixing ratios of CH4 and C2H6 were conducted. The reported single ICL based dual-gas sensor system has the advantages of reduced size and cost without influencing the midinfrared sensor detection sensitivity, selectivity and reliability.
  • Loading...
    Thumbnail Image
    Item
    Compact CH4 sensor system based on a continuous-wave, low power consumption, room temperature interband cascade laser
    (AIP Publishing, 2016) Dong, Lei; Li, Chunguang; Sanchez, Nancy P.; Gluszek, Aleksander K.; Griffin, Robert J.; Tittel, Frank K.
    A tunable diode laser absorption spectroscopy-based methane sensor, employing a dense-pattern multi-pass gas cell and a 3.3 μm, CW, DFB, room temperature interband cascade laser (ICL), is reported. The optical integration based on an advanced folded optical path design and an efficient ICL control system with appropriate electrical power management resulted in a CH4 sensor with a small footprint (32 × 20 × 17 cm3) and low-power consumption (6 W). Polynomial and least-squares fit algorithms are employed to remove the baseline of the spectral scan and retrieve CH4 concentrations, respectively. An Allan-Werle deviation analysis shows that the measurement precision can reach 1.4 ppb for a 60 s averaging time. Continuous measurements covering a seven-day period were performed to demonstrate the stability and robustness of the reported CH4 sensor system.
  • Loading...
    Thumbnail Image
    Item
    Compact TDLAS based sensor design using interband cascade lasers for mid-IR trace gas sensing
    (The Optical Society, 2016) Dong, Lei; Tittel, Frank K.; Li, Chunguang; Sanchez, Nancy P.; Wu, Hongpeng; Zheng, Chuantao; Yu, Yajun; Sampaolo, Angelo; Griffin, Robert J.
    Two compact TDLAS sensor systems based on different structural optical cores were developed. The two optical cores combine two recent developments, gallium antimonide (GaSb)-based ICL and a compact multipass gas cell (MPGC) with the goal to create compact TDLAS based sensors for the mid-IR gas detection with high detection sensitivity and low power consumption. The sensors achieved minimum detection limits of ~5 ppbv and ~8 ppbv, respectively, for CH4 and C2H6 concentration measurements with a 3.7-W power consumption.
  • Loading...
    Thumbnail Image
    Item
    CW DFB-QCL and EC-QCL based sensor for simultaneous NO and NO2 measurements via frequency modulation multiplexing using multi-pass absorption spectroscopy
    (SPIE, 2017) Yu, Yajun; Sanchez, Nancy P.; Lou, Minhan; Zheng, Chuantao; Wu, Hongpeng; Głuszek, Aleksander K.; Hudzikowski, Arkadiusz J.; Griffin, Robert J.; Tittel, Frank K.
    Nitrogen oxides (NOx), including nitric oxide (NO) and nitrogen dioxide (NO2) play important roles in determining the photochemistry of the ambient atmosphere, controlling the production of tropospheric ozone, affecting the concentration levels of the hydroxyl radical, and forming acid precipitation. A sensor system capable of simultaneous measurements of NO and NO2 by using a commercial 76 m astigmatic multi-pass gas cell (MPGC) was developed in order to enable fast-response NOx detection. A continuous wave (CW), distributed-feedback (DFB) quantum cascade laser (QCL) and a CW external-cavity (EC) QCL were employed for targeting a NO absorption doublet at 1900.075 cm-1 and a NO2 absorption line at 1630.33 cm-1, respectively. Both laser beams were combined and transmitted through the MPGC in an identical optical path and subsequently detected by a single mid-infrared detector. A frequency modulation multiplexing scheme was implemented by modulating the DFB-QCL and EC-QCL at different frequencies and demodulating the detector signal with two Labview software based lock-in amplifiers to extract the corresponding second-harmonic (2f) components. Continuous monitoring of NO and NO2 concentration levels was achieved by locking the laser frequencies to the selected absorption lines utilizing a reference cell filled with high concentrations of NO and NO2. The experimental results indicate minor performance degradation associated with frequency modulation multiplexing and no cross talk between the two multiplexed detection channels. The performance of the reported sensor system was evaluated for real time, sensitive and precise detection of NO and NO2 simultaneously.
  • Loading...
    Thumbnail Image
    Item
    CW EC-QCL-based sensor for simultaneous detection of H2O, HDO, N2O and CH4ᅠusing multi-pass absorption spectroscopy
    (The Optical Society, 2016) Yu, Yajun; Sanchez, Nancy P.; Griffin, Robert J.; Tittel, Frank K.
    A sensor system based on a continuous wave, external-cavity quantum-cascade laser (CW EC-QCL) was demonstrated for simultaneous detection of atmospheric H2O, HDO, N2O and CH4using a compact, dense pattern multi-pass gas cell with an effective path-length of 57.6 m. The EC-QCL with a mode-hop-free spectral range of 1225-1285 cm−1 operating at ~7.8 µm was scanned covering four neighboring absorption lines, for H2O at 1281.161 cm−1, HDO at 1281.455 cm−1, N2O at 1281.53 cm−1 and CH4 at 1281.61 cm−1. A first-harmonic-normalized wavelength modulation spectroscopy with second-harmonic detection (WMS-2f/1f) strategy was employed for data processing. An Allan-Werle deviation analysis indicated that minimum detection limits of 1.77 ppmv for H2O, 3.92 ppbv for HDO, 1.43 ppbv for N2O, and 2.2 ppbv for CH4 were achieved with integration times of 50-s, 50-s, 100-s and 129-s, respectively. Experimental measurements of ambient air are also reported.
  • Loading...
    Thumbnail Image
    Item
    Exploratory study of atmospheric methane enhancements derived from natural gas use in the Houston urban area
    (Elsevier, 2018) Sanchez, Nancy P.; Zheng, Chuantao; Ye, Weilin; Czader, Beata; Cohan, Daniel S.; Tittel, Frank K.; Griffin, Robert J.
    The extensive use of natural gas (NG) in urban areas for heating and cooking and as a vehicular fuel is associated with potentially significant emissions of methane (CH4) to the atmosphere. Methane, a potent greenhouse gas that influences the chemistry of the atmosphere, can be emitted from different sources including leakage from NG infrastructure, transportation activities, end-use uncombusted NG, landfills and livestock. Although significant CH4 leakage associated with aging local NG distribution systems in the U.S. has been reported, further investigation is required to study the role of this infrastructure component and other NG-related sources in atmospheric CH4 enhancements in urban centers. In this study, neighborhood-scale mobile-based monitoring of potential CH4emissions associated with NG in the Greater Houston area (GHA) is reported. A novel dual-gas 3.337 μm interband cascade laser-based sensor system was developed and mobile-mode deployed for simultaneous CH4 and ethane (C2H6) monitoring during a period of over 14 days, corresponding to ∼ 90 h of effective data collection during summer 2016. The sampling campaign covered ∼250 exclusive road miles and was primarily concentrated on eight residential zones with distinct infrastructure age and NG usage levels. A moderate number of elevated CH4 concentration events (37 episodes) with mixing ratios not exceeding 3.60 ppmv and associated with atmospheric background enhancements below 1.21 ppmv were observed during the field campaign. Source discrimination analyses based on the covariance between CH4 and C2H6 levels indicated the predominance of thermogenic sources (e.g., NG) in the elevated CH4 concentration episodes. The volumetric fraction of C2H6 in the sources associated with the thermogenic CH4 spikes varied between 2.7 and 5.9%, concurring with the C2H6 content in NG distributed in the GHA. Isolated CH4 peak events with significantly higher C2H6 enhancements (∼11%) were observed at industrial areas and locations with high density of petroleum and gas pipelines in the GHA, indicating potential variability in Houston's thermogenic CH4 sources.
  • Loading...
    Thumbnail Image
    Item
    Hydrogen peroxide detection with quartz-enhanced photoacoustic spectroscopy using a distributed-feedback quantum cascade laser
    (AIP Publishing LLC., 2014) Ren, Wei; Jiang, Wenzhe; Sanchez, Nancy P.; Patimisco, Pietro; Spagnolo, Vincenzo; Zah, Chung-en; Xie, Feng; Hughes, Lawrence C.; Griffin, Robert J.; Tittel, Frank K.
    A quartz-enhanced photoacoustic spectroscopy sensor system was developed for the sensitive detection of hydrogen peroxide (H2O2) using its absorption transitions in the v6 fundamental band at ∼7.73 μm. The recent availability of distributed-feedback quantum cascade lasers provides convenient access to a strong H2O2 absorption line located at 1295.55 cm−1. Sensor calibration was performed by means of a water bubbler that generated titrated average H2O2vapor concentrations. A minimum detection limit of 12 parts per billion (ppb) corresponding to a normalized noise equivalent absorption coefficient of 4.6 × 10−9 cm−1W/Hz1/2 was achieved with an averaging time of 100 s.
  • Loading...
    Thumbnail Image
    Item
    Mid-infrared dual-gas sensor for simultaneous detection of methane and ethane using a single continuous-wave interband cascade laser
    (The Optical Society, 2016) Ye, Weilin; Li, Chunguang; Zheng, Chuantao; Sanchez, Nancy P.; Gluszek, Aleksander K.; Hudzikowski, Arkadiusz J.; Dong, Lei; Griffin, Robert J.; Tittel, Frank K.
    A continuous-wave (CW) interband cascade laser (ICL) based mid-infrared sensor system was demonstrated for simultaneous detection of atmospheric methane (CH4) and ethane (C2H6). A 3.337 µm CW ICL with an emitting wavenumber range of 2996.0−3001.5 cm−1 was used to simultaneously target two absorption lines, C2H6 at 2996.88 cm−1 and CH4 at 2999.06 cm−1, respectively. The sensor performance was first evaluated for single-gas detection by only targeting the absorption line of one gas species. Allan deviations of 11.2 parts per billion in volume (ppbv) for CH4 and 1.86 ppbv for C2H6 with an averaging time of 3.4 s were achieved for the detection of these two gases. Dual-gas detection was realized by using a long-term scan signal to target both CH4 and C2H6 lines. The Allan deviations increased slightly to 17.4 ppbv for CH4 and 2.4 ppbv for C2H6 with an averaging time of 4.6 s due to laser temperature and power drift caused by long-term wavelength scanning. Measurements for both indoor and outdoor concentration changes of CH4 and C2H6 were conducted. The reported single ICL based dual-gas sensor system has the advantages of reduced size and cost compared to two separate sensor systems.
  • Loading...
    Thumbnail Image
    Item
    Quantum cascade laser-based multipass absorption system for hydrogen peroxide detection
    (SPIE, 2015) Cao, Yingchun; Sanchez, Nancy P.; Jiang, Wenzhe; Ren, Wei; Lewicki, Rafal; Jiang, Dongfang; Griffin, Robert J.; Tittel, Frank K.
    Hydrogen peroxide (H2O2) is a relevant molecular trace gas species, that is related to the oxidative capacity of the atmosphere, the production of radical species such as OH, the generation of sulfate aerosol via oxidation of S(IV) to S(VI), and the formation of acid rain. The detection of atmospheric H2O2 involves specific challenges due to its high reactivity and low concentration (ppbv to sub-ppbv level). Traditional methods for measuring atmospheric H2O2 concentration are often based on wet-chemistry methods that require a transfer from the gas- to liquid-phase for a subsequent determination by techniques such as fluorescence spectroscopy, which can lead to problems such as sampling artifacts and interference by other atmospheric constituents. A quartz-enhanced photoacoustic spectroscopy-based system for the measurement of atmospheric H2O2 with a detection limit of 75 ppb for 1-s integration time was previously reported. In this paper, an updated H2O2 detection system based on long-optical-path-length absorption spectroscopy by using a distributed feedback quantum cascade laser (DFB-QCL) will be described. A 7.73-μm CW-DFB-QCL and a thermoelectrically cooled infrared detector, optimized for a wavelength of 8 μm, are employed for theH2O2 sensor system. A commercial astigmatic Herriott multi-pass cell with an effective optical path-length of 76 m is utilized for the reported QCL multipass absorption system. Wavelength modulation spectroscopy (WMS) with second harmonic detection is used for enhancing the signal-to-noise-ratio. A minimum detection limit of 13.4 ppb is achieved with a 2 s sampling time. Based on an Allan-Werle deviation analysis the minimum detection limit can be improved to 1.5 ppb when using an averaging time of 300 s.
  • Loading...
    Thumbnail Image
    Item
    Seasonal differences in formation processes of oxidized organic aerosol near Houston, TX
    (Copernicus Publications, 2019) Dai, Qili; Schulze, Benjamin C.; Bi, Xiaohui; Bui, Alexander A.T.; Guo, Fangzhou; Wallace, Henry W.; Sanchez, Nancy P.; Flynn, James H.; Lefer, Barry L.; Feng, Yinchang; Griffin, Robert J.
    Submicron aerosol was measured to the southwest of Houston, Texas, during winter and summer 2014 to investigate its seasonal variability. Data from a high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) indicated that organic aerosol (OA) was the largest component of nonrefractory submicron particulate matter (NR-PM1) (on average, 38 % ± 13 % and 47 % ± 18 % of the NR-PM1 mass loading in winter and summer, respectively). Positive matrix factorization (PMF) analysis of the OA mass spectra demonstrated that two classes of oxygenated OA (less- and more-oxidized OOA, LO and MO) together dominated OA mass in summer (77 %) and accounted for 39 % of OA mass in winter. The fraction of LO-OOA (out of total OOA) is higher in summer (70 %) than in winter (44 %). Secondary aerosols (sulfate + nitrate + ammonium + OOA) accounted for ∼76 % and 88 % of NR-PM1 mass in winter and summer, respectively, indicating NR-PM1 mass was driven mostly by secondary aerosol formation regardless of the season. The mass loadings and diurnal patterns of these secondary aerosols show a clear winter–summer contrast. Organic nitrate (ON) concentrations were estimated using the NO+x ratio method, with contributions of 31 %–66 % and 9 %–17 % to OA during winter and summer, respectively. The estimated ON in summer strongly correlated with LO-OOA (r=0.73) and was enhanced at nighttime. The relative importance of aqueous-phase chemistry and photochemistry in processing OOA was investigated by examining the relationship of aerosol liquid water content (LWC) and the sum of ozone (O3) and nitrogen dioxide (NO2) (Ox = O3+NO2) with LO-OOA and MO-OOA. The processing mechanism of LO-OOA apparently was related to relative humidity (RH). In periods of RH < 80 %, aqueous-phase chemistry likely played an important role in the formation of wintertime LO-OOA, whereas photochemistry promoted the formation of summertime LO-OOA. For periods of high RH > 80 %, these effects were opposite those of low-RH periods. Both photochemistry and aqueous-phase processing appear to facilitate increases in MO-OOA concentration except during periods of high LWC, which is likely a result of wet removal during periods of light rain or a negative impact on its formation rate. The nighttime increases in MO-OOA during winter and summer were 0.013 and 0.01 µg MO-OOA per µg of LWC, respectively. The increase in LO-OOA was larger than that for MO-OOA, with increase rates of 0.033 and 0.055 µg LO-OOA per µg of LWC at night during winter and summer, respectively. On average, the mass concentration of LO-OOA in summer was elevated by nearly 1.2 µg m−3 for a ∼20 µg change in LWC, which was accompanied by a 40 ppb change in Ox.
  • Loading...
    Thumbnail Image
    Item
    Simultaneous atmospheric nitrous oxide, methane and water vapor detection with a single continuous wave quantum cascade laser
    (The Optical Society, 2015) Cao, Yingchun; Sanchez, Nancy P.; Jiang, Wenzhe; Griffin, Robert J.; Xie, Feng; Hughes, Lawrence C.; Zah, Chung-en; Tittel, Frank K.
    A continuous wave (CW) quantum cascade laser (QCL) based absorption sensor system was demonstrated and developed for simultaneous detection of atmospheric nitrous oxide (N2O), methane (CH4), and water vapor (H2O). A 7.73-µm CW QCL with its wavelength scanned over a spectral range of 1296.9-1297.6 cm−1 was used to simultaneously target three neighboring strong absorption lines, N2O at 1297.05 cm−1, CH4 at 1297.486 cm−1, and H2O at 1297.184 cm−1. An astigmatic multipass Herriott cell with a 76-m path length was utilized for laser based gas absorption spectroscopy at an optimum pressure of 100 Torr. Wavelength modulation and second harmonic detection was employed for data processing. Minimum detection limits (MDLs) of 1.7 ppb for N2O, 8.5 ppb for CH4, and 11 ppm for H2O were achieved with a 2-s integration time for individual gas detection. This single QCL based multi-gas detection system possesses applications in environmental monitoring and breath analysis.
  • Loading...
    Thumbnail Image
    Item
    Source apportionment of fine particulate matter in Houston, Texas: insights to secondary organic aerosols
    (Copernicus Publications, 2018) Al-Naiema, Ibrahim M.; Hettiyadura, Anusha P.S.; Wallace, Henry W.; Sanchez, Nancy P.; Madler, Carter J.; Cevik, Basak Karakurt; Bui, Alexander A.T.; Kettler, Josh; Griffin, Robert J.; Stone, Elizabeth A.
    Online and offline measurements of ambient particulate matter (PM) near the urban and industrial Houston Ship Channel in Houston, Texas, USA, during May 2015 were utilized to characterize its chemical composition and to evaluate the relative contributions of primary, secondary, biogenic, and anthropogenic sources. Aerosol mass spectrometry (AMS) on nonrefractory PM1 (PM  ≤  1µm) indicated major contributions from sulfate (averaging 50% by mass), organic aerosol (OA, 40%), and ammonium (14%). Positive matrix factorization (PMF) of AMS data categorized OA on average as 22% hydrocarbon-like organic aerosol (HOA), 29% cooking-influenced less-oxidized oxygenated organic aerosol (CI-LO-OOA), and 48% more-oxidized oxygenated organic aerosol (MO-OOA), with the latter two sources indicative of secondary organic aerosol (SOA). Chemical analysis of PM2.5 (PM  ≤  2.5µm) filter samples agreed that organic matter (35%) and sulfate (21%) were the most abundant components. Organic speciation of PM2.5 organic carbon (OC) focused on molecular markers of primary sources and SOA tracers derived from biogenic and anthropogenic volatile organic compounds (VOCs). The sources of PM2.5 OC were estimated using molecular marker-based positive matric factorization (MM-PMF) and chemical mass balance (CMB) models. MM-PMF resolved nine factors that were identified as diesel engines (11.5%), gasoline engines (24.3%), nontailpipe vehicle emissions (11.1%), ship emissions (2.2%), cooking (1.0%), biomass burning (BB, 10.6%), isoprene SOA (11.0%), high-NOx anthropogenic SOA (6.6%), and low-NOx anthropogenic SOA (21.7%). Using available source profiles, CMB apportioned 41% of OC to primary fossil sources (gasoline engines, diesel engines, and ship emissions), 5% to BB, 15% to SOA (including 7.4% biogenic and 7.6% anthropogenic), and 39% to other sources that were not included in the model and are expected to be secondary. This study presents the first application of in situ AMS-PMF, MM-PMF, and CMB for OC source apportionment and the integration of these methods to evaluate the relative roles of biogenic, anthropogenic, and BB-SOA. The three source apportionment models agreed that  ∼ 50% of OC is associated with primary emissions from fossil fuel use, particularly motor vehicles. Differences among the models reflect their ability to resolve sources based upon the input chemical measurements, with molecular marker-based methods providing greater source specificity and resolution for minor sources. By combining results from MM-PMF and CMB, BB was estimated to contribute 11% of OC, with 5% primary emissions and 6% BB-SOA. SOA was dominantly anthropogenic (28%) rather than biogenic (11%) or BB-derived. The three-model approach demonstrates significant contributions of anthropogenic SOA to fine PM. More broadly, the findings and methodologies presented herein can be used to advance local and regional understanding of anthropogenic contributions to SOA.
  • About R-3
  • Report a Digital Accessibility Issue
  • Request Accessible Formats
  • Fondren Library
  • Contact Us
  • FAQ
  • Privacy Notice
  • R-3 Policies

Physical Address:

6100 Main Street, Houston, Texas 77005

Mailing Address:

MS-44, P.O.BOX 1892, Houston, Texas 77251-1892