Repository logo
English
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of R-3
English
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Samansky, Eric Michael"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Convergence of Gibbs measures and the behavior of shrinking tubular neighborhoods of fractals and algebraic sets
    (2007) Samansky, Eric Michael; Hardt, Robert M.
    Annealing is a physical process that motivates our definition of a Gibbs measure, which is a certain probability measure on Euclidean space. In this paper we examine a sequence of Gibbs measures characterized by the distance function. In Chapter 2 we conclude that the sequence of measures converge to a Hausdorff probability measure equally distributed along self-similar fractals with Hutchinson's Open Set Condition. In Chapter 3 we study spaces of concentric circles (which we call targets) in the plane, and examine how the sequence of probability measures distributes over the targets. By varying the number of targets and the size of the circles, we find probability measures that divide their mass between different point masses and spaces. Finally, in Chapter 4 we conclude that the measure will distribute evenly over the highest-dimensional strata of any semi-algebraic set.
  • About R-3
  • Report a Digital Accessibility Issue
  • Request Accessible Formats
  • Fondren Library
  • Contact Us
  • FAQ
  • Privacy Notice
  • R-3 Policies

Physical Address:

6100 Main Street, Houston, Texas 77005

Mailing Address:

MS-44, P.O.BOX 1892, Houston, Texas 77251-1892