Repository logo
English
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of R-3
English
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Salvatierra, Rodrigo V."

Now showing 1 - 3 of 3
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Battery metal recycling by flash Joule heating
    (AAAS, 2023) Chen, Weiyin; Chen, Jinhang; Bets, Ksenia V.; Salvatierra, Rodrigo V.; Wyss, Kevin M.; Gao, Guanhui; Choi, Chi Hun; Deng, Bing; Wang, Xin; Li, John Tianci; Kittrell, Carter; La, Nghi; Eddy, Lucas; Scotland, Phelecia; Cheng, Yi; Xu, Shichen; Li, Bowen; Tomson, Mason B.; Han, Yimo; Yakobson, Boris I.; Tour, James M.; Welch Institute for Advanced Materials; NanoCarbon Center; Applied Physics Program; Smalley-Curl Institute
    The staggering accumulation of end-of-life lithium-ion batteries (LIBs) and the growing scarcity of battery metal sources have triggered an urgent call for an effective recycling strategy. However, it is challenging to reclaim these metals with both high efficiency and low environmental footprint. We use here a pulsed dc flash Joule heating (FJH) strategy that heats the black mass, the combined anode and cathode, to >2100 kelvin within seconds, leading to ~1000-fold increase in subsequent leaching kinetics. There are high recovery yields of all the battery metals, regardless of their chemistries, using even diluted acids like 0.01 M HCl, thereby lessening the secondary waste stream. The ultrafast high temperature achieves thermal decomposition of the passivated solid electrolyte interphase and valence state reduction of the hard-to-dissolve metal compounds while mitigating diffusional loss of volatile metals. Life cycle analysis versus present recycling methods shows that FJH significantly reduces the environmental footprint of spent LIB processing while turning it into an economically attractive process.
  • Loading...
    Thumbnail Image
    Item
    Nondestructive flash cathode recycling
    (Springer Nature, 2024) Chen, Weiyin; Cheng, Yi; Chen, Jinhang; Bets, Ksenia V.; Salvatierra, Rodrigo V.; Ge, Chang; Li, John Tianci; Luong, Duy Xuan; Kittrell, Carter; Wang, Zicheng; McHugh, Emily A.; Gao, Guanhui; Deng, Bing; Han, Yimo; Yakobson, Boris I.; Tour, James M.; Applied Physics Program;Smalley-Curl Institute;NanoCarbon Center;Rice Advanced Materials Institute
    Effective recycling of end-of-life Li-ion batteries (LIBs) is essential due to continuous accumulation of battery waste and gradual depletion of battery metal resources. The present closed-loop solutions include destructive conversion to metal compounds, by destroying the entire three-dimensional morphology of the cathode through continuous thermal treatment or harsh wet extraction methods, and direct regeneration by lithium replenishment. Here, we report a solvent- and water-free flash Joule heating (FJH) method combined with magnetic separation to restore fresh cathodes from waste cathodes, followed by solid-state relithiation. The entire process is called flash recycling. This FJH method exhibits the merits of milliseconds of duration and high battery metal recovery yields of ~98%. After FJH, the cathodes reveal intact core structures with hierarchical features, implying the feasibility of their reconstituting into new cathodes. Relithiated cathodes are further used in LIBs, and show good electrochemical performance, comparable to new commercial counterparts. Life-cycle-analysis highlights that flash recycling has higher environmental and economic benefits over traditional destructive recycling processes.
  • Loading...
    Thumbnail Image
    Item
    Vertically aligned carbon nanotube arrays as electrodes
    (2019-09-03) Tour, James M.; Raji, Abdul-rahman O.; Salvatierra, Rodrigo V.; Rice University; United States Patent and Trademark Office
    Embodiments of the present disclosure pertain to electrodes that include a plurality of vertically aligned carbon nanotubes and a metal associated with the vertically aligned carbon nanotubes. The vertically aligned carbon nanotubes may be in the form of a graphene-carbon nanotube hybrid material that includes a graphene film covalently linked to the vertically aligned carbon nanotubes. The metal may become reversibly associated with the carbon nanotubes in situ during electrode operation and lack any dendrites or mossy aggregates. The metal may be in the form of a non-dendritic or non-mossy coating on surfaces of the vertically aligned carbon nanotubes. The metal may also be infiltrated within bundles of the vertically aligned carbon nanotubes. Additional embodiments pertain to energy storage devices that contain the electrodes of the present disclosure. Further embodiments pertain to methods of forming said electrodes by applying a metal to a plurality of vertically aligned carbon nanotubes.
  • About R-3
  • Report a Digital Accessibility Issue
  • Request Accessible Formats
  • Fondren Library
  • Contact Us
  • FAQ
  • Privacy Notice
  • R-3 Policies

Physical Address:

6100 Main Street, Houston, Texas 77005

Mailing Address:

MS-44, P.O.BOX 1892, Houston, Texas 77251-1892