Repository logo
English
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of R-3
English
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Rudd, Jennifer A."

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Investigation into the Re-Arrangement of Copper Foams Pre- and Post-CO2 Electrocatalysis
    (MDPI, 2021) Rudd, Jennifer A.; Hernandez-Aldave, Sandra; Kazimierska, Ewa; Hamdy, Louise B.; Bain, Odin J.E.; Barron, Andrew R.; Andreoli, Enrico
    The utilization of carbon dioxide is a major incentive for the growing field of carbon capture. Carbon dioxide could be an abundant building block to generate higher-value chemical products. Herein, we fabricated a porous copper electrode capable of catalyzing the reduction of carbon dioxide into higher-value products, such as ethylene, ethanol and propanol. We investigated the formation of the foams under different conditions, not only analyzing their morphological and crystal structure, but also documenting their performance as a catalyst. In particular, we studied the response of the foams to CO2 electrolysis, including the effect of urea as a potential additive to enhance CO2 catalysis. Before electrolysis, the pristine and urea-modified foam copper electrodes consisted of a mixture of cuboctahedra and dendrites. After 35 min of electrolysis, the cuboctahedra and dendrites underwent structural rearrangement affecting catalysis performance. We found that alterations in the morphology, crystallinity and surface composition of the catalyst were conducive to the deactivation of the copper foams.
  • Loading...
    Thumbnail Image
    Item
    The application of amine-based materials for carbon capture and utilisation: an overarching view
    (Royal Society of Chemistry, 2021) Hamdy, Louise B.; Goel, Chitrakshi; Rudd, Jennifer A.; Barron, Andrew R.; Andreoli, Enrico
    In the ongoing research campaign to reduce the global atmospheric CO2 concentration, technologies are being developed to enable the capture of CO2 from dilute sources and conversion into higher-value products. Amine and polyamine-based materials feature widely in the literature as solid CO2 sorbents and as catalyst modifiers for CO2 electrochemical reduction; however, advancing lab-scale research into a pilot or industrial-scale application is fraught with challenges, starting with the definition and identification of an effective adsorbent. This multidisciplinary review serves as an essential introduction to the role of amines in carbon capture and utilisation for scientists entering and advancing the field. The chemical and engineering principles of amine-based CO2 capture are considered to define the parameters required of an adsorbent, describe adsorption testing methods, and introduce the reader to a range of amine-based adsorbents and how they can be specialised to overcome specific issues. Finally, the application of electrocatalysts modified with nitrogen-containing compounds and polymers is reviewed in the context of CO2 utilisation.
  • About R-3
  • Report a Digital Accessibility Issue
  • Request Accessible Formats
  • Fondren Library
  • Contact Us
  • FAQ
  • Privacy Notice
  • R-3 Policies

Physical Address:

6100 Main Street, Houston, Texas 77005

Mailing Address:

MS-44, P.O.BOX 1892, Houston, Texas 77251-1892