Browsing by Author "Rubin, David M."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Burial and Exhumation of Sedimentary Rocks Revealed by the Base Stimson Erosional Unconformity, Gale Crater, Mars(Wiley, 2022) Watkins, Jessica A.; Grotzinger, John P.; Stein, Nathan T.; Banham, Steven G.; Gupta, Sanjeev; Rubin, David M.; Morgan, Kathryn Stack; Edgett, Kenneth S.; Frydenvang, Jens; Siebach, Kirsten L.; Lamb, Michael P.; Sumner, Dawn Y.; Lewis, Kevin W.Sedimentary rocks record the ancient climate of Mars through changes between subaqueous and eolian depositional environments, recognized by their stratal geometries and suites of sedimentary structures. Orbiter- and rover-image-based geologic mapping show a dynamic evolution of the 5-km-thick sedimentary sequence exposed along the flanks of Aeolis Mons (informally, Mt. Sharp) in Gale crater, Mars, by deposition of subaqueous strata followed by exhumation via eolian erosion and then deposition of overlying, onlapping strata of inferred eolian origin. This interpretation suggests that a significant unconformity should occur at the base of the onlapping strata, thus predicting lateral variations in elevation along the contact between the underlying Mt. Sharp group and overlying Stimson formation. Curiosity rover and high-resolution orbital image data quantify paleotopographic variability associated with the contact; ∼140 m of net elevation change and a slope closely aligned with the modern topography is expressed along the regional contact. These results support the interpretation of an erosional unconformity between these strata and that it was likely formed as a result of eolian erosion within the crater, indicative of a transition from wet to dry climate and providing insight into the stratigraphic context, geologic history, and habitability within Gale crater.Item Ice? Salt? Pressure? Sediment deformation structures as evidence of late-stage shallow groundwater in Gale crater, Mars(Geological Society of America, 2024) Banham, Steven G.; Roberts, Amelie L.; Gupta, Sanjeev; Davis, Joel M.; Thompson, Lucy M.; Rubin, David M.; Paar, Gerhard; Siebach, Kirsten L.; Dietrich, William E.; Fraeman, Abigail A.; Vasavada, Ashwin R.Persistence of near-surface water during the late evolution of Gale crater, Mars, would have been fundamental for maintaining a habitable environment. Sedimentation in aqueous conditions is evident during the early stages of crater infilling, where accumulation of lower Mount Sharp group strata is characterized by fluviolacustrine sedimentary rocks. The basal unit of the Siccar Point group—the Stimson formation—which unconformably overlies the Mount Sharp group and represents conditions postdating the exhumation of Aeolis Mons, is characterized by accumulation of aeolian strata under arid conditions. Water was largely absent near the surface during its deposition. At the Feòrachas outcrop, discovery of soft sediment deformation structures in aeolian Stimson strata challenges the notion that Gale crater was devoid of water during its later depositional phase. We identified deformed wind-rippled and vertically laminated sandstones, hosted within erosion-resistant ridges forming boxwork patterns. Broadly, these structures are diagnostic of water (as liquid or as ice) in the shallow subsurface. Comparison with Earth analogues suggests formation by subsurface fluid escape, freeze-thaw processes, or evaporite deformation. Regardless of the mechanism, these structures signify the presence of water at or near the surface much later than previously documented and may extend the habitability window in Gale crater.