Repository logo
English
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of R-3
English
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Roth, Aaron"

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Fairness Incentives for Myopic Agents
    (ACM, 2017) Kannan, Sampath; Kearns, Michael; Morgenstern, Jamie; Pai, Mallesh; Roth, Aaron; Vohra, Rakesh; Wu, Zhiwei Steven
    We consider settings in which we wish to incentivize myopic agents (such as Airbnb landlords, who may emphasize short-term profits and property safety) to treat arriving clients fairly, in order to prevent overall discrimination against individuals or groups. We model such settings in both classical and contextual bandit models in which the myopic agents maximize rewards according to current empirical averages, but are also amenable to exogenous payments that may cause them to alter their choices. Our notion of fairness asks that more qualified individuals are never (probabilistically) preferred over less qualifie ones [8]. We investigate whether it is possible to design inexpensive subsidy or payment schemes for a principal to motivate myopic agents to play fairly in all or almost all rounds. When the principal has full information about the state of the myopic agents, we show it is possible to induce fair play on every round with a subsidy scheme of total cost o(T) (for the classic setting with k arms, ~{O}(\sqrtk3T), and for the d-dimensional linear contextual setting ~{O}(d\sqrtk3T)). If the principal has much more limited information (as might often be the case for an external regulator or watchdog), and only observes the number of rounds in which members from each of the k groups were selected, but not the empirical estimates maintained by the myopic agent, the design of such a scheme becomes more complex. We show both positive and negative results in the classic and linear bandit settings by upper and lower bounding the cost of fair subsidy schemes.
  • Loading...
    Thumbnail Image
    Item
    Online Multivalid Learning: Means, Moments, and Prediction Intervals
    (Dagstuhl Publishing, 2022) Gupta, Varun; Jung, Christopher; Noarov, Georgy; Pai, Mallesh M.; Roth, Aaron
    We present a general, efficient technique for providing contextual predictions that are “multivalid” in various senses, against an online sequence of adversarially chosen examples (x, y). This means that the resulting estimates correctly predict various statistics of the labels y not just marginally –as averaged over the sequence of examples – but also conditionally on x ∈ G for any G belonging to an arbitrary intersecting collection of groups G. We provide three instantiations of this framework. The first is mean prediction, which corresponds to an online algorithm satisfying the notion of multicalibration from [5]. The second is variance and higher moment prediction, which corresponds to an online algorithm satisfying the notion of mean-conditioned moment multicalibration from [6]. Finally, we define a new notion of prediction interval multivalidity, and give an algorithm for finding prediction intervals which satisfy it. Because our algorithms handle adversarially chosen examples, they can equally well be used to predict statistics of the residuals of arbitrary point prediction methods, giving rise to very general techniques for quantifying the uncertainty of predictions of black box algorithms, even in an online adversarial setting. When instantiated for prediction intervals, this solves a similar problem as conformal prediction, but in an adversarial environment and with multivalidity guarantees stronger than simple marginal coverage guarantees.
  • About R-3
  • Report a Digital Accessibility Issue
  • Request Accessible Formats
  • Fondren Library
  • Contact Us
  • FAQ
  • Privacy Notice
  • R-3 Policies

Physical Address:

6100 Main Street, Houston, Texas 77005

Mailing Address:

MS-44, P.O.BOX 1892, Houston, Texas 77251-1892