Repository logo
English
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of R-3
English
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Romberg, Justin K."

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    A universal hidden Markov tree image model
    (1999) Romberg, Justin K.; Baraniuk, Richard G.
    Wavelet-domain hidden Markov models have proven to be useful tools for statistical signal and image processing. The hidden Markov tree (HMT) model captures the key features of the joint density of the wavelet coefficients of real-world data. One potential drawback to the HMT framework is the need for computationally expensive iterative training. We propose two reduced-parameter HMT models that capture the general structure of a broad class of real-world images. In the image HMT model, we use the fact that for real-world images the structure of the HMT is self-similar across scale, allowing us to reduce the complexity of the model to just nine parameters. In the universal HMT we fix these nine parameters, eliminating training while retaining nearly all of the key structure modeled by the full HMT. Finally, we propose a fast shift-invariant HMT estimation algorithm that outperforms all other wavelet-based estimators in the current literature.
  • Loading...
    Thumbnail Image
    Item
    Multiscale geometric image processing
    (2004) Romberg, Justin K.; Baraniuk, Richard G.
    Since their introduction a little more than 10 years ago, wavelets have revolutionized image processing. Wavelet based algorithms define the state-of-the-art for applications including image coding (JPEG-2000), restoration, and segmentation. Despite their success, wavelets have significant shortcomings in their treatment of edges. Wavelets do not parsimoniously capture even the simplest geometrical structure in images, and wavelet based processing algorithms often produce images with ringing around the edges. As a first step towards accounting for this structure, we will show how to explicitly capture the geometric regularity of contours in cartoon images using the wedgelet representation and a multiscale geometry model. The wedgelet representation builds up an image out of simple piecewise constant functions with linear discontinuities. We will show how the geometry model, by putting a joint distribution on the orientations of the linear discontinuities, allows us to weigh several factors when choosing the wedgelet representation: the error between the representation and the original image, the parsimony of the representation, and whether the wedgelets in the representation form "natural" geometrical structures. We will analyze a simple wedgelet coder based on these principles, and show that it has optimal asymptotic performance for simple cartoon images. Next, we turn our attention to piecewise smooth images; images that are smooth away from a smooth contour. Using a representation composed of wavelets and wedgeprints (wedgelets projected into the wavelet domain), we develop a quadtree based prototype coder whose rate-distortion performance is asymptotically near-optimal. We use these ideas to implement a full-scale image coder that outperforms JPEG-2000 both in peak signal to noise ratio (by 1--1.5dB at low bitrates) and visually. Finally, we shift our focus to building a statistical image model directly in the wavelet domain. For applications other than compression, the approximate shift-invariance and directional selectivity of the slightly redundant complex wavelet transform make it particularly well-suited for modeling singularity structure. Around edges in images, complex wavelet coefficients behave very predictably, exhibiting dependencies that we will exploit using a hidden Markov tree model. We demonstrate the effectiveness of the complex wavelet model with several applications: image denoising, multiscale segmentation, and feature extraction.
  • About R-3
  • Report a Digital Accessibility Issue
  • Request Accessible Formats
  • Fondren Library
  • Contact Us
  • FAQ
  • Privacy Notice
  • R-3 Policies

Physical Address:

6100 Main Street, Houston, Texas 77005

Mailing Address:

MS-44, P.O.BOX 1892, Houston, Texas 77251-1892