Browsing by Author "Rogers, John A."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item A wirelessly programmable, skin-integrated thermo-haptic stimulator system for virtual reality(National Academy of Sciences, 2024) Kim, Jae-Hwan; Vázquez-Guardado, Abraham; Luan, Haiwen; Kim, Jin-Tae; Yang, Da Som; Zhang, Haohui; Chang, Jan-Kai; Yoo, Seonggwang; Park, Chanho; Wei, Yuanting; Christiansen, Zach; Kim, Seungyeob; Avila, Raudel; Kim, Jong Uk; Lee, Young Joong; Shin, Hee-Sup; Zhou, Mingyu; Jeon, Sung Woo; Baek, Janice Mihyun; Lee, Yujin; Kim, So Young; Lim, Jaeman; Park, Minsu; Jeong, Hyoyoung; Won, Sang Min; Chen, Renkun; Huang, Yonggang; Jung, Yei Hwan; Yoo, Jae-Young; Rogers, John A.Sensations of heat and touch produced by receptors in the skin are of essential importance for perceptions of the physical environment, with a particularly powerful role in interpersonal interactions. Advances in technologies for replicating these sensations in a programmable manner have the potential not only to enhance virtual/augmented reality environments but they also hold promise in medical applications for individuals with amputations or impaired sensory function. Engineering challenges are in achieving interfaces with precise spatial resolution, power-efficient operation, wide dynamic range, and fast temporal responses in both thermal and in physical modulation, with forms that can extend over large regions of the body. This paper introduces a wireless, skin-compatible interface for thermo-haptic modulation designed to address some of these challenges, with the ability to deliver programmable patterns of enhanced vibrational displacement and high-speed thermal stimulation. Experimental and computational investigations quantify the thermal and mechanical efficiency of a vertically stacked design layout in the thermo-haptic stimulators that also supports real-time, closed-loop control mechanisms. The platform is effective in conveying thermal and physical information through the skin, as demonstrated in the control of robotic prosthetics and in interactions with pressure/temperature-sensitive touch displays.Item Three-dimensional mesostructures as high-temperature growth templates, electronic cellular scaffolds, and self-propelled microrobots(National Academy of Sciences, 2017) Yan, Zheng; Han, Mengdi; Shi, Yan; Badea, Adina; Yang, Yiyuan; Kulkarni, Ashish; Hanson, Erik; Kandel, Mikhail E.; Wen, Xiewen; Zhang, Fan; Luo, Yiyue; Lin, Qing; Zhang, Hang; Guo, Xiaogang; Huang, Yuming; Nan, Kewang; Jia, Shuai; Oraham, Aaron W.; Mevis, Molly B.; Lim, Jaeman; Guo, Xuelin; Gao, Mingye; Ryu, Woomi; Yu, Ki Jun; Nicolau, Bruno G.; Petronico, Aaron; Rubakhin, Stanislav S.; Lou, Jun; Ajayan, Pulickel M.; Thornton, Katsuyo; Popescu, Gabriel; Fang, Daining; Sweedler, Jonathan V.; Braun, Paul V.; Zhang, Haixia; Nuzzo, Ralph G.; Huang, Yonggang; Zhang, Yihui; Rogers, John A.Exploiting advanced 3D designs in micro/nanomanufacturing inspires potential applications in various fields including biomedical engineering, metamaterials, electronics, electromechanical components, and many others. The results presented here provide enabling concepts in an area of broad, current interest to the materials community––strategies for forming sophisticated 3D micro/nanostructures and means for using them in guiding the growth of synthetic materials and biological systems. These ideas offer qualitatively differentiated capabilities compared with those available from more traditional methodologies in 3D printing, multiphoton lithography, and stress-induced bending––the result enables access to both active and passive 3D mesostructures in state-of-the-art materials, as freestanding systems or integrated with nearly any type of supporting substrate.