Browsing by Author "Robertson, Claudia S."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Antioxidant Carbon Particles Improve Cerebrovascular Dysfunction Following Traumatic Brain Injury(American Chemical Society, 2012) Bitner, Brittany R.; Marcano, Daniela C.; Berlin, Jacob M.; Fabian, Roderic H.; Cherian, Leela; Culver, James C.; Dickinson, Mary E.; Robertson, Claudia S.; Pautler, Robia G.; Kent, Thomas A.; Tour, James M.; Smalley Institute for Nanoscale Science and TechnologyInjury to the neurovasculature is a feature of brain injury and must be addressed to maximize opportunity for improvement. Cerebrovascular dysfunction, manifested by reduction in cerebral blood flow (CBF), is a key factor that worsens outcome after traumatic brain injury (TBI), most notably under conditions of hypotension. We report here that a new class of antioxidants, poly(ethylene glycol)-functionalized hydrophilic carbon clusters (PEG-HCCs), which are nontoxic carbon particles, rapidly restore CBF in a mild TBI/hypotension/resuscitation rat model when administered during resuscitation--a clinically relevant time point. Along with restoration of CBF, there is a concomitant normalization of superoxide and nitric oxide levels. Given the role of poor CBF in determining outcome, this finding is of major importance for improving patient health under clinically relevant conditions during resuscitative care, and it has direct implications for the current TBI/hypotension war-fighter victims in the Afghanistan and Middle East theaters. The results also have relevancy in other related acute circumstances such as stroke and organ transplantation.Item Oxidized Activated Charcoal Nanozymes: Synthesis, and Optimization for In Vitro and In Vivo Bioactivity for Traumatic Brain Injury(Wiley, 2024) McHugh, Emily A.; Liopo, Anton V.; Mendoza, Kimberly; Robertson, Claudia S.; Wu, Gang; Wang, Zhe; Chen, Weiyin; Beckham, Jacob L.; Derry, Paul J.; Kent, Thomas A.; Tour, James M.; Smalley-Curl Institute;NanoCarbon Center;Welch Institute for Advanced MaterialsCarbon-based superoxide dismutase (SOD) mimetic nanozymes have recently been employed as promising antioxidant nanotherapeutics due to their distinct properties. The structural features responsible for the efficacy of these nanomaterials as antioxidants are, however, poorly understood. Here, the process–structure–property–performance properties of coconut-derived oxidized activated charcoal (cOAC) nano-SOD mimetics are studied by analyzing how modifications to the nanomaterial's synthesis impact the size, as well as the elemental and electrochemical properties of the particles. These properties are then correlated to the in vitro antioxidant bioactivity of poly(ethylene glycol)-functionalized cOACs (PEG-cOAC). Chemical oxidative treatment methods that afford smaller, more homogeneous cOAC nanoparticles with higher levels of quinone functionalization show enhanced protection against oxidative damage in bEnd.3 murine endothelioma cells. In an in vivo rat model of mild traumatic brain injury (mTBI) and oxidative vascular injury, PEG-cOACs restore cerebral perfusion rapidly to the same extent as the former nanotube-derived PEG-hydrophilic carbon clusters (PEG-HCCs) with a single intravenous injection. These findings provide a deeper understanding of how carbon nanozyme syntheses can be tailored for improved antioxidant bioactivity, and set the stage for translation of medical applications.