Browsing by Author "Ren, Lei"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Terahertz and Infrared Spectroscopy of Gated Large-Area Graphene(American Chemical Society, 2012) Ren, Lei; Zhang, Qi; Yao, Jun; Sun, Zhengzong; Kaneko, Ryosuke; Yan, Zheng; Nanot, Sébastien L.; Jin, Zhong; Kawayama, Iwao; Tonouchi, Masayoshi; Tour, James M.; Kono, Junichiro; Bioengineering; Chemistry; Computer Science; Materials Science and Nanoengineering; Electrical and Computer Engineering; Applied PhysicsWe have fabricated a centimeter-size single-layer graphene device with a gate electrode, which can modulate the transmission of terahertz and infrared waves. Using time-domain terahertz spectroscopy and Fourier-transform infrared spectroscopy in a wide frequency range (10–10 000 cm–1), we measured the dynamic conductivity change induced by electrical gating and thermal annealing. Both methods were able to effectively tune the Fermi energy, EF, which in turn modified the Drude-like intraband absorption in the terahertz as well as the “2EF onset” for interband absorption in the mid-infrared. These results not only provide fundamental insight into the electromagnetic response of Dirac fermions in graphene but also demonstrate the key functionalities of large-area graphene devices that are desired for components in terahertz and infrared optoelectronics.Item Terahertz Dynamics of Quantum-Confined Electrons in Carbon Nanomaterials(Springer, 2012) Ren, Lei; Zhang, Qi; Nanot, Sébastien; Kawayama, Iwao; Tonouchi, Masayoshi; Kono, JunichiroLow-dimensional carbon nanostructures, such as single-wall carbon nanotubes (SWCNTs) and graphene, offer new opportunities for terahertz science and technology. Being zero-gap systems with a linear, photon-like energy dispersion, metallic SWCNTs and graphene exhibit a variety of extraordinary properties. Their DC and linear electrical properties have been extensively studied in the last decade, but their unusual finite-frequency, nonlinear, and/or non-equilibrium properties are largely unexplored, although they are predicted to be useful for new terahertz device applications. Terahertz dynamic conductivity measurements allow us to probe the dynamics of such photon-like electrons, or massless Dirac fermions. Here, we use terahertz time-domain spectroscopy and Fourier transform infrared spectroscopy to investigate terahertz conductivities of one-dimensional and two-dimensional electrons, respectively, in films of highly aligned SWCNTs and gated largearea graphene. In SWCNTs, we observe extremely anisotropic terahertz conductivities, promising for terahertz polarizer applications. In graphene, we demonstrate that terahertz and infrared properties sensitively change with the Fermi energy, which can be controlled by electrical gating and thermal annealing.Item Terahertz Dynamics of Quantum-Confined Electrons in Carbon Nanomaterials(2012) Ren, Lei; Kono, JunichiroThe terahertz (THz) frequency range. 0.1 - 20 THz, exists between the microwave and infrared ranges and contains abundant information on the dynamics of charge and spin carriers in condensed matter systems. Since its advent two decades ago, THz spectroscopy has been extensively used to study a wide range of solid state materials, including typical semiconductors, conducting polymers, insulators, superconductors, and artificially grown structures such as quantum wells. In these systems, electronic and photonic events tend to occur on the time scale of tens to hundreds of femtoseconds, which results in many important excitations, resonances and dynamical phenomena in the THz frequency range. In this dissertation work, we have developed a typical THz time-domain spectroscopy (TDS) system to investigate the THz dynamics of quantum-confined electrons in two important types of carbon nanomaterial: single-walled carbon nanotubes (SWNTs) and graphene. Polarization dependent THz transmission measurements were conducted on a highly-aligned SWNT film on a sapphire substrate, revealing extremely high anisotropy: virtually no attenuation was observed when the polarization of the THz beam was perpendicular to the nanotube axis, while the THz beam was strongly absorbed when its polarization was parallel to the tube axis. From the measured absorption anisotropy, we calculated the reduced linear dichrosim to be 3, corresponding to a nematic order parameter of 1. These observations are a direct result of the one-dimensional nature of conduction electrons in the nanotubes and at the same time, demonstrate that any misalignment of nanotubes in the film mast have characteristic length scales much smaller than the wavelengths used in these experiments (1.5 mm - 150 μm). Based on this work, an ideal THz linear polarizer built with parallel stacks of such aligned SWNT films was synthesized, exhibiting a degree of polarization of 99.9% throughout the frequency range 0.2 - 2.2 THz and a high extinction ratio of 10 -3 (or 30 dB). The THz complex conductivity of the thin SWNT film was extracted through a proper model directly from the TDS data without Kramers-Kronig analysis. Both real and imaginary parts of the conductivity showed a non-Drude frequency dependence, indicating the presence of plasmon-dipole resonance at higher frequencies. Finally, the optical conductivity of large-area. graphene grown from solid state carbon source was studied in a wide spectral range (7 cm -1 - 9500 cm -1 ) using THz-TDS and Fourier transform infrared spectroscopy. We observed that the Fermi level E f of graphene could be tuned by both electrical gating and thermal annealing. The optical conductivity measured at different carrier concentrations exhibited Drude-like frequency dependence, and different 2 E f onsets in the spectrum were probed as well.